Indiana Department of Environmental Management Pleasant Run and Bean Creek TMDL Study June 26, 2003 # Draft Report # **Contents** ## **Executive Summary** | Section 1 | Introduction | 1-1 | |-----------|--|-----| | Section 2 | Background Information | 2-1 | | 2.1 | Parameter of Concern | 2-1 | | 2.2 | Water Quality Standards | 2-1 | | Section 3 | Data Sources and Initial Assessment | 3-1 | | 3.1 | Data Sources | 3-1 | | 3.2 | Sampling Locations | 3-1 | | 3.3 | Data Review and Initial Findings | 3-3 | | Section 4 | Water Quality Characterization | 4-1 | | 4.1 | Compliance Evaluation | 4-1 | | | 4.1.1 All Weather Analysis | 4-2 | | | 4.1.2 Dry Weather Analysis | 4-2 | | | 4.1.3 Wet Weather Analysis | 4-2 | | Section 5 | Source Characterization | 5-1 | | 5.1 | Septic Systems | 5-1 | | 5.2 | Illicit Connections | 5-2 | | 5.3 | Wildlife and Natural Background | 5-2 | | 5.4 | Stormwater Runoff | 5-2 | | 5.5 | Combined Sewer Overflows | 5-3 | | Section 6 | Total Maximum Daily Load Analysis | 6-1 | | 6.1 | Goals | 6-1 | | 6.2 | Methods | 6-1 | | 6.3 | Load Allocation | 6-2 | | 6.4 | Findings of Simulated Scenarios | 6-3 | | 6.5 | Margin of Safety | 6-3 | | Section 7 | Public Participation | 7-1 | | 7.1 | Public Meetings | 7-1 | | Section 8 | Implementation Activities and Schedule | 8-1 | | 8.1 | Stormwater Program | 8-1 | | 8.2 | Septic Tank Elimination Program | | | 8.3 | CSO Long Term Control Plan | | | Section 9 | Monitoring Plan | 9-1 | |------------|-----------------|-----| | | <u> </u> | | | Appendix A | | | # **Figures** - 3.1 Water Quality Sampling Sites on Pleasant Run and Bean Creek - 3.2 Pleasant Run E. coli Data Plots - 3.3 Pleasant Run E. coli Data Plots - 3.4 Pleasant Run E. coli Data Plots - 3.5 Pleasant Run E. coli Data Plots - 3.6 Pleasant Run E. coli Data Plots - 3.7 Bean Creek E. coli Data Plots - 3.8 Bean Creek E. coli Data Plots - 3.9 Bean Creek E. coli Data Plots - 4.1 Stream Segments on Pleasant Run and Bean Creek - 4.2 *E. coli* Bacteria Compliance Pleasant Run Upstream of CSO Area (Based on 2000 to 2002 Data) Stream Miles 8.1 to 11.2 - 4.3 E. coli Bacteria Compliance –Pleasant Run within of CSO Area (Based on 2000 to 2002 Data) Stream Miles 0 to 8.1 - 4.4 *E. coli* Bacteria Compliance –Bean Creek Upstream of CSO Area (Based on 2000 to 2002 Data) Stream Miles 1.3 to 5.2 - 4.5 *E. coli* Bacteria Compliance –Bean Creek Within CSO Area (Based on 2000 to 2002 Data) Stream Miles 0 to 1.3 - 6.1 Pleasant Run CSO Area Predicted Daily *E. coli* Bacteria Counts April 1, 1997 through October 31, 1997 - 6.2 Pleasant Run Upstream of CSO Area E. coli Bacteria Geometric Mean - 6.3 Pleasant Run within CSO Area E. coli Bacteria Geometric Mean # **Tables** | 4.1 | Segment River Mile - Pleasant Run | |-----|--| | 4.2 | E. coli Bacteria Compliance – Pleasant Run | | | | | 5.1 | Failing Septic Systems – Pleasant Run | | 5.2 | Illicit Connections to Storm Drains - Pleasant Run | | 5.3 | Instream Wildlife – Pleasant Run | | 5.4 | Stormwater Runoff from Separate Sewer Areas - Pleasant Run | | 5.5 | Unpermitted and Permitted Stormwater Runoff Sources - Pleasant Run | | 5.6 | Combined Sewer Overflows - Pleasant Run | | | | | 6.1 | Sample of Pleasant Run CSO Area Daily E. coli Counts | | 6.2 | Comparison of Observed and Modeled E. coli Counts - Pleasant Run | | 6.3 | Total Average E. coli Daily Load - Pleasant Run | | 6.4 | Effects of Watershed Improvement Scenarios - Pleasant Run | # **List of Acronyms** AAC - Acute Aquatic Criterion **AWT- Advanced Wastewater Treatment** CAC - Chronic Aquatic Criterion CWA - Clean Water Act CSO - Combined Sewer Overflow IDEM - Indiana Department of Environmental Management IMAGIS - Indianapolis Mapping and Geographic Infrastructure System LTCP - Long Term Control Plan MCHD - Marion County Health Department MOS - Margin of Safety NPDES- National Pollutant Discharge Elimination System OES - Office of Environmental Services TMDL- Total Maximum Daily Load TSS- Total Suspended Solids ## **Executive Summary** Water quality data has been collected from Pleasant Run in Marion County since 1991. In 1998, the Indiana Department of Environmental Management (IDEM) determined that Pleasant Run does not consistently comply with the state's water quality standards for *E. coli* bacteria. As a result, Pleasant Run was listed on the 1998 303(d) list and required to have a Total Maximum Daily Load (TMDL) evaluation for *E. coli* bacteria. A model of Pleasant Run was developed and calibrated to the existing instream data for *E. coli* bacteria. A ten-year period of time was simulated to predict resultant instream *E. coli* bacteria counts for each day of the simulation period. Data collected by several agencies was obtained for the water quality model development. Pleasant Run was divided into two segments for analysis purposes as follows: - Pleasant Run upstream of the Combined Sewer Overflow (CSO) Area - Pleasant Run within the CSO Area Sources of *E. coli* bacteria in the watershed include CSOs, urban stormwater, failing septic systems, illicit storm drain connections, and pollutants from wildlife and domestic animals. Point sources and nonpoint sources were characterized and represented in the model for evaluation of loadings and development of load reduction scenarios to determine the required action necessary to attain water quality standards. Based on the modeling and data analyzed, the allowable TMDLs for Pleasant Run were determined to be as follows: - Pleasant Run upstream of the CSO area -- 9.35 x 10° colony forming units (cfu), which would require a 96% reduction from the existing daily bacteria load. - Pleasant Run within the CSO area -- **1.74x 10**¹⁰ **cfu**, which would require a 99.96% reduction from the existing daily bacteria load. The analysis also incorporated a representative load reduction scenario. This scenario is representative of the currently planned watershed programs being pursued by the City of Indianapolis. These programs consist of removing illicit storm drain connections, converting failing septic systems to sanitary sewers in the Septic Tank Elimination Program, reducing stormwater loadings per the stormwater NPDES permit program, and controlling CSOs per the final CSO Long Term Control Plan (LTCP¹). The city's current stormwater NPDES permit program is estimated to reduce the stormwater *E. coli* bacteria load by 10 percent. An additional scenario was also developed to evaluate the water quality impacts of flow augmentation in the Fall Creek CSO segment. ¹ The modeled load reduction was the recommended plan in the April 2001 Draft CSO LTCP. The recommended level of CSO control was 85% capture, or 12 overflow events per year. The final CSO LTCP is in development. ES-1 The performance of the city's projected programs was compared with 1) monthly geometric mean standard of 125 cfu/100 ml, 2) percent of days with *E. coli* bacteria levels above the daily maximum standard of 235 cfu/100 ml, and 3) the number of days per year with *E. coli* bacteria levels above 10,000 cfu/100 ml. The findings show that all three criteria can be met under dry weather flow conditions by the removal of failing septic systems and illicit storm drain connections. The findings also show that significant reductions in wet weather *E. coli* bacteria can be achieved by the city's planned stormwater and CSO controls. These findings will be revised based on the level of CSO control in the final CSO LTCP that is approved by IDEM and USEPA. However, additional load reduction beyond the city's planned programs may be necessary to achieve the total maximum daily load necessary to meet water quality goals. # Section 1 Introduction The State of Indiana assesses its water bodies for compliance with water quality standards criteria established for their designated uses as required by the Federal Clean Water Act (CWA). Assessed water bodies are placed into three categories, supporting, partially supporting, or not supporting their designated uses depending on water quality assessment results. These water bodies are found on Indiana's 305(b) list, which is published every two years, as required by that section of the CWA that defines the assessment process. Some of the 305(b) partially and not supporting water bodies are also assigned to Indiana's 303(d) list, also named after a section of the CWA. Water bodies on the 303(d) list are required to have a Total Maximum Daily Load (TMDL) evaluation for the water quality constituent(s) in violation of the water quality standard. The TMDL process establishes the allowable loading of pollutants or other quantifiable parameters for a water body based on the relationship between pollution sources and in-stream water quality conditions. This allows water quality-based controls to be developed to reduce pollution and restore and maintain water quality. *E. coli* bacteria data has been collected from Pleasant Run in Marion County since 1991 by the City of Indianapolis. In 1998, the Indiana Department of Environmental Management (IDEM) determined that the *E. coli* bacteria standard is exceeded along the entire length of Pleasant Run. As a result, Pleasant Run was added to the state's 1998 303(d) list and scheduled for a TMDL evaluation. # Section 2 Background Information The study segment relevant for this TMDL report consists of Pleasant Run from the most upstream extent to the confluence with the West Fork of the White River. This area does not consistently meet the Indiana bacteria (*E. coli*) water quality standard both during dry and wet weather. ### 2.1 Parameters of Concern The State of Indiana's 1998 section 303(d) list shows one parameter of concern for Pleasant Run within the study area described above: *E. coli* bacteria. Section 303(d) of the Clean Water Act requires states to list waters for which technology-based limits alone do not ensure attainment of
water quality standards. States are to list and set priority rankings for their listed impaired waters. To address water body segments on the 303(d) list, states are required to develop TMDLs that allow these segments to attain water quality standards. This report presents instream data as well as modeling results and load allocations to achieve the standard for *E. coli* bacteria. ## 2.2 Water Quality Standards IDEM has promulgated water quality standards to protect designated uses of waterways. These standards include numeric recreational use standards for *E. coli* bacteria, which can be used as target values for the TMDL. The applicable bacteria standard is for *E. coli* bacteria and is as follows: ... for full body contact recreational uses E. coli bacteria, using membrane filter (MF) count, shall not exceed one hundred twenty-five (125) per one hundred (100) milliliters as a geometric mean based on not less than five (5) samples equally spaced over a thirty (30) day period nor exceed two hundred thirty-five (235) per one hundred (100) milliliters in any one (1) sample in a thirty (30) day period. E. coli bacteria is used as the water quality indicator and the target values are: - Monthly geometric mean not to exceed 125 cfu/100 ml - Monthly maximum count sampled not to exceed 235 cfu/100 ml. # Section 3 Data Sources and Initial Assessment Data characterizing the amount of *E. coli* bacteria entering Pleasant Run from various sources were collected. These pollutants cause exceedances of the Indiana water quality standards for *E. coli* bacteria. This section of the report describes the sources of the data collected for review and gives an initial assessment of compliance for *E. coli* bacteria. #### 3.1 Data Sources Instream *E. coli* bacteria sampling data was obtained from the following sources: - City of Indianapolis Department of Public Works Office of Environmental Services (OES) and - Marion County Health Department (MCHD). ## 3.2 Sampling Locations Data for *E. coli* bacteria were collected at various intervals and locations by the two agencies. The sampling locations for each agency are shown on **Figure 3.1**. The City of Indianapolis OES has collected samples and performed *E. coli* bacteria analysis at two locations on Pleasant Run and two locations on Bean Creek, a tributary to Pleasant Run. These samples were analyzed and continue to be analyzed on a monthly basis from May 1991 to present. Sampling locations are: - 16th Street and Pleasant Run - Meridian Street and Pleasant Run - Southern Avenue and Bean Creek - Garfield Park and Bean Creek The MCHD has also collected samples five times per month at six sites on Pleasant Run and three sites on Bean Creek. The locations of the sampling stations along with their corresponding sampling dates are shown below. #### Pleasant Run - 21st Street August 1997 to March 2002 - Arlington Avenue August 1997 to March 2002 - Southeastern Avenue December 1997 to March 2002 - Barth Avenue February 2000 to March 2002 - Garfield Park December 1997 to March 2002 - Bluff Road December 1997 to March 2002 #### Bean Creek - Emerton Place December 1997 to March 2002 - Keystone Avenue December 1997 to March 2002 - Garfield Park December 1997 to March 2002 Additionally, in 2002 OES and MCHD performed sampling at several locations along the streams of interest to supplement the existing *E. coli* bacteria data for the TMDL project. Data was collected from these additional stations five times per month from April 2002 to October 2002. The following is a list of sites for Pleasant Run and Bean Creek where supplemental *E. coli* bacteria samples were collected: #### Pleasant Run - 30th Street - 21st Street - 16th Street - 10th Street - Pleasant Run Golf Course and South Creek - Pleasant Run Golf Course - Bolton Avenue/Arlington Avenue - Emerson Avenue - Keystone Avenue - Barth Avenue - Sherman Drive - Southeastern Avenue - State Street - Garfield Park - Meridian Street - Bluff Road #### Bean Creek - Orange Street - Emerton Place - Southern Avenue - Keystone Avenue - Bethel Avenue ■ Garfield Park ### 3.3 Data Review and Initial Findings CDM has reviewed the available data for Pleasant Run. All data collected by OES, and MCHD is considered to have received quality assurance checks by the respective collecting entity (OES or MCHD). In addition, IDEM has approved the use of OES and MCHD data for this analysis. Additional data checking was not performed for this analysis. Data flagged by the collecting entity as questionable is presented in the attached graphs and noted as being questionable, but not used for determination of compliance. All accepted data are considered comparable. OES and TMDL sampling (April 2002-October 2002) used the same method for comparison purposes. That is, where data is collected by more than one entity at a particular monitoring location, the data sets are combined for the assessment of compliance with the applicable standard. Data plots of all stations and compliance plots for Pleasant Run and Bean Creek are found in **Figures 3.2 through 3.9**. The following paragraphs summarize the findings from each source and the overall percent compliance with Indiana water quality standards for data from January 2000 to December 2001. A comparison of the available data was made to both the maximum monthly *E. coli* bacteria standard of 235 cfu/100 ml and the monthly geometric mean standard of 125 cfu/100 ml for the recreational season of April to October. Overall, the major findings are: - More than 90 percent of the sampling stations exceed the daily maximum *E. coli* bacteria standard (235 cfu/100ml) more than 50 percent of the time. - All of the sampling stations with sufficient data (5 samples in 30 days) exceed the geometric mean *E. coli* bacteria standard (125 cfu/100 ml) 100 percent of the time. Along Pleasant Run from 21st Street to the confluence with the White River, *E. coli* bacteria problems are apparent. There is a low percent compliance with the bacteria standard. In addition, the number of exceedances of the standard occurring upstream of the CSO segment is similar to the number of exceedances occurring within the CSO stream segment. Figure 3.2: Pleasant Run E. coli Data Plots Figure 3.3: Pleasant Run E. coli Data Plots Figure 3.4: Pleasant Run E. coli Data Plots Figure 3.5: Pleasant Run E. coli Data Plots Figure 3.6: Pleasant Run E. coli Data Plots Figure 3.7: Bean Creek E. coli Data Plots Figure 3.8: Bean Creek E. coli Data Plots Figure 3.9: Bean Creek E. coli Data Plots # Section 4 Water Quality Characterization The previous section documents the existing water quality for Pleasant Run. The findings indicate that the *E. coli* bacteria standard of 125 cfu/100 ml (geometric mean of five samples collected over 30 days) and 235 cfu/100 ml (maximum day value) are often exceeded in the stream. ## 4.1 Compliance Evaluation *E. coli* bacteria data for 2000, 2001, and 2002 were analyzed for compliance with three reference criteria as follows: - IDEM's geometric mean water quality standard for *E. coli* bacteria which is 125 cfu/100 ml or less, - IDEM's 303(d) Listing Methodology (2002) guidance of no more than 10 percent of samples be above 235 cfu/100 ml, and - IDEM's 303(d) Listing Methodology (2002) guidance of no sample having an *E. coli* level greater than 10,000 cfu/100 ml. For this analysis, the *E. coli* bacteria data was separated into two categories, wet weather and dry weather. Wet weather is defined as any days with precipitation (greater than trace amounts) and the three days following that day. Dry weather is any time other than wet weather. Pleasant Run and Bean Creek were divided into segments for analysis purposes as follows: - Pleasant Run Upstream of the CSO Area - Pleasant Run Within the CSO Area - Bean Creek Upstream of the CSO Area - Bean Creek Within the CSO Area Instream *E. coli* bacteria sampling data for stations upstream of the CSO areas were grouped for each stream. Monitoring stations in the CSO areas were a second group for each stream. For informational purposes, data from Bean Creek were also analyzed. **Table 4.1 and Figure 4.1** show the extent of each stream segment analyzed. **Table 4.2** provides a summary of the *E. coli* bacteria sampling program for the stream segments compared to the three reference *E. coli* bacteria compliance criteria and presents the findings of the compliance analysis for the segments analyzed. **Figures 4.2 through 4.6** present the findings graphically. ### 4.1.1 All Weather Analysis All four stream segments are not in compliance with the *E. coli* bacteria monthly geometric mean standard of 125 cfu/100 ml or the reference criteria of less than 10% of samples below 235 cfu/100 ml and no samples in excess of 10,000 cfu/100 ml. The analysis suggests that all stream segments are not able to accept the *E. coli* bacteria load from septic, stormwater, and CSO sources. The 29 samples in excess of 10,000 cfu/100 ml in the Pleasant Run CSO area imply that CSOs are a significant source of *E. coli* bacteria to the stream. The high number of samples in excess of 10,000 cfu/100 ml in Bean Creek upstream of the CSO area suggests that septic and stormwater sources are significant to the stream segment. ### 4.1.2 Dry Weather Analysis All four stream segments are not in compliance with the Indiana geometric mean standard of 125 cfu/100 ml or the reference criteria of less than 10% of samples above 235 cfu/100 ml during dry weather. The analysis suggests that the septic, wildlife, and illicit connection loads are excessive for the stream. The presence of samples in excess of 10,000 cfu/100 ml in Bean Creek and the Pleasant Run CSO area segment illustrates the significance of these dry weather sources. #### 4.1.3 Wet Weather Analysis All four stream segments are not in compliance with all three criteria during wet weather. The analysis suggests that the stormwater and CSO loads are excessive for the
stream. However, the relatively small difference between dry and wet weather periods for the reference criteria of less than 10% of samples above 235 cfu/100 ml suggests that *E. coli* bacteria concentrations in slight excess of 235 cfu/100 ml is primarily due to dry weather loads, and the wet weather loads to the stream segments are producing *E. coli* bacteria concentrations in far excess of 235 cfu/100 ml. Figure 4.1: Stream Segments on Pleasant Run and Bean Creek Figure 4.2: E. coli Bacteria Compliance **Pleasant Run Upstream of CSO Area** (Based on 2000 to 2002 Data) City of Indianapolis Stream Miles 8.1 to 11.2 100% 750 ■ Geometric Mean of 2000-2002 data 700 **IDEM** standard 90% of 125 cfu / 100 ml 650 % of Samples > than 235 cfu/100 ml IDEM guidance 10% or less 80% 600 % of Samples > 235 cfu / 100 ml 550 70% 500 E. coli (cfu/100 ml) 450 60% 400 50% 350 300 40% 250 30% 200 150 20% 100 10% 50 0% 0 All Data **Dry Days** Wet Days Table 4.1: Segment River Mile – Pleasant Run | Stream Segment | Stream Mile Start | Stream Mile End | |-------------------------------------|-------------------|-----------------| | Pleasant Run - Upstream of CSO Area | 8.1 | 11.2 | | Pleasant Run - Within CSO Area | 0 | 8.1 | | Bean Creek - Upstream of CSO Area | 1.3 | 5.2 | | Bean Creek - Within CSO Area | 0 | 1.3 | Table 4.2: E. coli Bacteria Compliance – Pleasant Run | | | All Data | | | |--|---|----------------------------------|---|----------------------------| | River Segment | Geometric Mean of 2000-2002 data | % of Samples > 235 cfu/100 ml | Total Number of Samples > 10,000 cfu/100 ml | Total Number of
Samples | | Pleasant Run - Upstream of CSO Area | 342 | 59.3% | 4 | 258 | | Pleasant Run - Within CSO Area | 413 | 59.5% | 29 | 862 | | Bean Creek - Upstream of CSO Area | 502 | 71.1% | 8 | 340 | | Bean Creek - Within CSO Area | 466 | 71.3% | 5 | 178 | | | | Dry Weath | ner | | | River Segment | Geometric Mean of 2000-2002 data | % of Samples > 235 cfu/100 ml | Total Number of Samples > 10,000 cfu/100 ml | Total Number of
Samples | | Pleasant Run - Upstream of CSO Area | 267 | 56.2% | 0 | 137 | | Pleasant Run - Within CSO Area | 269 | 53.8% | 3 | 461 | | Bean Creek - Upstream of CSO Area | 421 | 68.6% | 1 | 175 | | Bean Creek - Within CSO Area | 346 | 70.5% | 0 | 88 | | | | Wet Weath | ner | | | River Segment | Geometric Mean of 2000-2002 data | % of Samples > 235 cfu/100 ml | Total Number of Samples > 10,000 cfu/100 ml | Total Number of
Samples | | Pleasant Run - Upstream of CSO Area | 454 | 62.8% | 4 | 121 | | Pleasant Run - Within CSO Area | 676 | 66.1% | 26 | 401 | | Bean Creek - Upstream of CSO Area | 603 | 73.3% | 7 | 165 | | Bean Creek - Within CSO Area | 625 | 72.2% | 5 | 90 | | State Guidance ⁽¹⁾ | (IDEM standard of 125 cfu/100 ml) | (IDEM Guidance 10% or less) | (IDEM Guidance None > 10,000 cfu/100 ml) | | | (1) Indiana's 303(d) Listing Methodology | y for Impaired Waterbodies and Total Ma | ximum Daily Load - September 200 | 02 | | # **Section 5 Source Characterization** A model was developed to simulate the impact of both dry and wet weather *E. coli* bacteria sources. The model simulates wet-weather bacteria sources including CSOs and urban/residential nonpoint sources to Pleasant Run. Additionally, work was performed to define the sources of dry weather bacteria and the components of urban/residential nonpoint source wet-weather contaminants. A source assessment is used to characterize the known and suspected sources of *E. coli* bacteria in the watershed for the development of the TMDL. *E. coli* bacteria was characterized for the following sources: - Septic systems - Illicit connections to storm drains - Wildlife/Natural - Stormwater runoff - Combined sewer overflows There is one NPDES wastewater treatment facility on Pleasant Run, which is for cooling water and does not discharge *E. coli* bacteria. All sources of *E. coli* bacteria identified in the watershed were assigned a loading rate based on data from the City of Indianapolis programs, literature values, and population in the watershed. Because of varying decay or die-off rates for *E. coli* bacteria, and varying transport assumptions, the *E. coli* bacteria loading from these sources were computed separately as described below. ### 5.1 Septic Systems Failing septic systems have been linked to increased *E. coli* bacteria levels in streams throughout the world. In accordance with the City of Indianapolis' Septic Tank Elimination Program, a list of neighborhoods with failing septic systems is kept and updated based on new information. Scheduling of sewer projects in each neighborhood is partially based on the degree of system failure that is observed. Priority levels 1 through 3 are assigned, with Priority 1 typically corresponding to neighborhoods with the highest degree of failure. The failure information was obtained for the period of 2000 through 2002 and was compared to sampling data for that same period. As of early 2000, there were five Priority 1 septic neighborhoods within the Pleasant Run watershed boundary, as well as one Priority 2 and one Priority 3 septic neighborhood. The number of septic systems in each watershed was estimated based on the city's GIS data for septic neighborhoods, buildings, and watersheds. *E. coli* bacteria loads were estimated based on an estimated failure rate, flow rate, and *E. coli* bacteria counts for the septic neighborhoods. For purposes of the TMDL analysis, the failure rate for septic systems was related to the priority level of the neighborhood as follows: ■ Priority 1: 25% failure rate ■ Priority 2: 15% failure rate ■ Priority 3: 10% failure rate ■ All others: 5% failure rate A flow of 100 gallons/person-day and a concentration of 10,000 cfu/100 ml (Horsley and Whitten, 1996) for each failing septic system were assigned. Leaking septic systems are characterized as a point source having constant flow and concentration. The loading rate attributed to leaking septic systems is estimated to be 4.66×10^{10} cfu per day. **Table 5.1** summarizes the estimated failed septic system *E. coli* bacteria loadings into Pleasant Run. #### **5.2** Illicit Connections Stormwater outfalls often carry *E. coli* bacteria during dry weather because of loadings from illicit sanitary connections to the stormwater collection system. The <u>City of Indianapolis Fifth Annual Report (2002)</u> for the NPDES stormwater permit (AMEC, 2003) reported that approximately 7.7% of the stormwater outfalls sampled contained dry weather flows. For each illicit discharge, a flow of 20 gpd with 10,000 cfu/100 ml for *E. coli* bacteria was assigned. **Table 5.2** summarizes the estimated illicit storm drain *E. coli* bacteria loadings into Pleasant Run. ## 5.3 Wildlife and Natural Background Not all *E. coli* bacteria in waterways is the result of man-made sources. Wildlife, both instream and on-bank, can be a source of *E. coli* bacteria to the streams. To estimate the potential load from wildlife, the instream monitoring station at 71st Street on Fall Creek was utilized. The land use above 71st Street indicates natural conditions with few anthropogenic sources. The *E. coli* bacteria monitoring data from this station was used as a basis for representing the wildlife or natural *E. coli* bacteria load into the streams. **Table 5.3** summarizes the estimated *E. coli* bacteria concentrations and loadings into Pleasant Run that are a result of natural biota in the watersheds. All *E. coli* concentrations shown in the table received adjustment during model calibration (Section 6.2). ### 5.4 Stormwater Runoff Stormwater often carries *E. coli* because of loadings from domestic animals, wildlife, and agricultural land. Information from the City of Indianapolis' stormwater program and GIS coverages provided insight into the contribution of stormwater to the *E. coli* exceedance seen in Pleasant Run and showed what progress has been made thus far in alleviating that contribution. Due to variations in solid deposits in residential, commercial, and other property types, a range of *E. coli* concentrations was estimated for each land use. Average stormwater *E. coli* counts were estimated from Indianapolis Mapping and Geographic Infrastructure System (IMAGIS) land use and watershed coverages. These bacteria counts were applied to surface runoff flows from October 1991 to October 2001 predicted using the city's watershed model. **Table 5.4** contains a summary of the average daily surface runoff flows and *E. coli* loadings into Pleasant Run based on land use. **Table 5.5** shows the percentages of stormwater loads into Pleasant Run that come from permitted (storm drain outfall), non-permitted (surface runoff), and out-of-county sources. This information is pertinent to the TMDL analysis as the city's stormwater programs only address the control of stormwater *E. coli* from sources within the county. #### 5.5 Combined Sewer Overflows Combined Sewer Overflows (CSOs) can be a large source of *E. coli* in urban streams. The CSO flows and *E. coli* bacteria loadings were determined using a methodology similar to that being used for the CSO Long Term Control Plan (LTCP). CSO discharges were predicted by the city's collection system model for a ten-year period of time (October 1991 to October 2001). *E. coli* sampling of CSO discharges were performed by the city in 2001 to characterize CSO discharges. Concentrations ranged from 500,000 cfu/100 ml up to 900,000 cfu/100 ml. The CSO flows and *E. coli* loads were predicted using the city's models and sampling data. **Table 5.6** contains a summary of the estimated *E. coli* loadings from CSOs on Pleasant Run. #### TABLE 5.1: FAILING SEPTIC SYSTEMS **PLEASANT RUN** Approximate Count of Septic Systems Estimated Failing Estimated Failing Estimated Failing **Total Septic**
Estimated Failing **Approximate** Septic Flow Septic Daily Load Septic Monthly Watershed Barrett Law Barrett Law Non-Barrett Septic Systems Population Systems (MGD) Load (cfu) Priority 1 Priority 2 Priority 3 Law (cfu) 25% 15% 10% 5% Assumed Failure Rate 163 204 56 89 512 81 285 0.03 5.39E+09 3.24E+11 Pleasant Run Upstream Pleasant Run CSO 30 129 0 94 253 32 110 0.01 4.18E+09 1.25E+11 Pleasant Run Totals 333 56 183 765 113 395 9.57E+09 193 0 4.49E+11 | TABLE 5.2: ILLICIT CONNECTIONS TO STORM DRAINS PLEASANT RUN | | | | | | | | | | |--|-----|-----|---|----------|----------|----------|--|--|--| | Watershed # of Storm Outfalls Miles of Storm Outfalls Miles of Storm Outfalls Miles of Storm Outfalls Miles of Storm Outfalls Approximate number of Illicit Connection Outfalls Estimated Illicit Connection Outfalls Estimated Illicit Connection Outfalls Outfall | | | | | | | | | | | Pleasant Run Upstream | 85 | 127 | 7 | 1.40E-04 | 5.30E+07 | 1.59E+09 | | | | | Pleasant Run CSO | 110 | 155 | 8 | 1.60E-04 | 6.06E+07 | 1.82E+09 | | | | ^{*}Illicit Connections for all stream segments assumed at 7.7% of outfalls (based on 2002 NPDES Stormwater report sampling data) 20 gpd sanitary flow, and 10,000 cfu/100 ml E. coli in the illict flow ^{*}Assumptions include 3.5 persons per septic system, 100 gpcd septic flow, and 10,000 cfu/100 ml E. coli in the septic flow ^{**}Persons per system and per capita flows taken from May 1989 DPW Design Standards ^{***}Assume 5,000 cfu/100 ml for Pleasant Run Upstream | TABLE 5.3: INSTREAM WILDLIFE PLEASANT RUN | | | | | | | | | |--|----|-----|----------|----------|--|--|--|--| | Watershed Average Dry- Average Dry- Approximate Weather E. coli Weather stream Instream Wildlife (cfu/100 ml) flow (cfs) Daily Load (cfu) Average Dry- Approximate Instream Wildlife Monthly Load (cfu) | | | | | | | | | | Pleasant Run Upstream* 20 2.0 9.79E+08 2.94E+10 | | | | | | | | | | Pleasant Run CSO* | 20 | 2.0 | 9.79E+08 | 2.94E+10 | | | | | ^{*}The 71st Street Sampling Station along Fall Creek is not in close proximity to any septic systems. Its dry-weather observed E. coli bacteria concentrations are assumed to be the result of wildlife. This concentration is applied to all other streams | TABLE 5.4: STORMWATER RUNOFF FROM SEPARATE SEWER AREAS PLEASANT RUN | | | | | | | | | | | | |---|------------|-------------|------------------------|----------------|----------------|----------------|------------|------------|---------------|--------------------------|--------------------------| | | | | Approxin | nate Percentag | e of Specified | Land use | | | Approximate | | | | Land use Type | Commercial | Residential | Historic &
Hospital | Industrial | Parks | Highway
ROW | Spec. Uses | University | Average E. | Daily
Average | Daily
Average | | Zoning Class | All C's | All D's | All H's | All I's | All PK's | ROW, RC | All SU's | All U's | Concentration | Stormwater
Flow (cfs) | Stormwater
Load (cfu) | | Assumed E. coli concentration | 2500 | 2000 | 2500 | 5000 | 2000 | 5000 | 3000 | 3000 | (cfu/100 ml) | - () | (1) | | Pleasant Run Upstream | 11% | 53% | 0% | 22% | 7% | 4% | 3% | 0% | 2200 | 5 | 2.56E+11 | | Pleasant Run CSO | 12% | 68% | 1% | 12% | 2% | 1% | 2% | 1% | 2200 | 1 | 4.35E+10 | ^{*}These concentrations received adjustment during model calibration. Calibrated concentrations are shown. | TABLE 5.5: UNPERMITTED AND PERMITTED STORMWATER RUNOFF SOURCES PLEASANT RUN | | | | | | | | | | |--|--------|---|---|--------|------|----|----|--|--| | Watershed Permitted Storm Area without Sewer Area (Acres) County (A | | | | | | | | | | | Pleasant Run & Bean Creek Upstream | 14,000 | - | - | 14,000 | 100% | 0% | 0% | | | | TABLE 5.6: COMBINED SEWER OVERFLOWS PLEASANT RUN | | | | | | | | | | | |--|------------------------|----------------------|--|---|--|---|---|--|--|--| | Watershed | # Of CSO
Regulators | # of CSO
Outfalls | Annual
Average
CSO
Volume
(MG) | Average CSO
E. Coli
Concentration
(cfu/100 ml) | Annual
Average
CSO E. Coli
Load (cfu) | Daily
Average
CSO E. Coli
Load (cfu) | Monthly
Average
CSO E. Coli
Load (cfu) | | | | | Pleasant Run CSO | 51 | 51 | 334 | 1.21E+06 | 1.51E+16 | 4.13E+13 | 1.24E+15 | | | | ^{*}Flows and bacteria loadings are from the 50-year rainfall record. Flows and loads are model results. ## **Section 6 Total Maximum Daily Load Analysis** A TMDL is a tool for meeting water quality standards. It is based on the relationship between sources of pollutants and instream water quality conditions. The TMDL establishes the allowable loadings for specific pollutants that a water body can receive without exceeding water quality standards, thereby providing the basis for establishing water quality based pollutant controls. #### 6.1 Goals Using the U.S. EPA *Protocol for Developing Pathogen TMDLs* (January 2001), the following steps were followed and utilized to develop a TMDL for *E. coli* bacteria: - **Problem identification**: Identify key factors and background information for waterbody that describe the nature of the impairment. - Water quality indicators and targets: Identify numeric indicators and target values that can be used to evaluate attainment of water quality standards. - **Source assessment**: Identify and characterize sources of pollutant to water body. - Linkage
between water quality targets and sources: Linkage establishes the cause and effect relationship between the pollutant sources and the instream water quality response. The linkage is further used to estimate the load assimilation capacity of the water body, which is the maximum amount of pollutant loading a water body can assimilate and still attain water quality standards. - **Load allocation**: Based on the established target/sources linkage, pollutant loadings that will not exceed the load assimilation capacity and will lead to attainment of the water quality standard can be determined. - **Assembling the TMDL**: The elements of a TMDL submittal are compiled to facilitate TMDL review. The final step in the TMDL process will occur in the near future. ■ **Follow-up monitoring and evaluation**: After implementation of the TMDL, follow-up monitoring is used to assess if the TMDL results in attaining water quality standards for the water body. #### 6.2 Methods An *E. coli* bacteria model of Pleasant Run was developed and calibrated to the existing instream *E. coli* bacteria data. The model simulated the daily instream bacteria counts for each stream segment based on loads from the sources described in Section 5. For the dry weather sources, a constant load was applied, whereas for stormwater runoff and CSO discharges, the *E. coli* bacteria load was based on the city's separate sewer area water quality model for stormwater and the collection system interceptor model for CSO discharges during wet weather. A ten-year period of time (October 1991 through September 2001) was simulated. Data on stream flow was used to predict the resultant instream *E. coli* bacteria counts for each day for the ten-year period. Daily flow data for the Pleasant Run – Arlington Avenue station was obtained from the USGS for the period of October 1, 1991 through September 30, 2001. This flow data was used for the daily *E. coli* bacteria model. **Table 6.1** presents a sample page from the daily *E. coli* bacteria model for the Pleasant Run – CSO area. **Figure 6.1** presents the predicted instream bacteria counts for April 1, 1997 to October 31, 1997, the most representative sampling period. Model calibration consisted of comparisons of the *E. coli* bacteria geometric mean, percent of samples greater than 235 cfu/100 ml and the number of samples over 10,000 cfu/100 ml per year of sampling. These comparisons were performed for both dry weather and wet weather data. The calibration of the model for *E. coli* bacteria included quality control checks of the USGS daily flow data, adjustment for *E. coli* bacteria contributions from wildlife for all segments, adjustment for the septic flow *E. coli* bacteria contributions, and for *E. coli* bacteria contributions from stormwater. **Table 6.2** contains a summary of the observed and modeled *E. coli* bacteria loading parameters from October 1991 through September 2001. The percentage of observed and predicted days in excess of 235 cfu/100 ml for dry, wet, and all weather conditions is reported in the table. **Table 6.3** summarizes the failed septic systems, illicit connections, wildlife, stormwater, and CSO *E. coli* bacteria loadings into Pleasant Run. #### 6.3 Load Allocation After establishing the pollutant sources and the relationship between pollutant sources and instream water quality, a load allocation (reduction) was developed to achieve the numeric target value for *E. coli* bacteria. The allowable TMDLs for Pleasant Run are as follows: - Pleasant Run upstream of the CSO area -- 9.35 x 10° cfu, which would require a 96% reduction from the existing daily bacteria load. - Pleasant Run within the CSO area -- **1.74x 10**¹⁰ **cfu**, which would require a 99.96% reduction from the existing daily bacteria load. However, there are numerous combinations of load reduction scenarios that all achieve the target value. The method for load allocation is very important and can require significant work with stakeholders and other interested parties. To address this issue, a series of up to four load allocations scenarios were simulated and evaluated. These scenarios will be revised based on the level of CSO control in the final CSO LTCP that is approved by IDEM and USEPA. Based on the discussion and direction from IDEM, the scenarios were modified and a final set of scenarios was simulated. #### Two scenarios were evaluated: - 1. This scenario is representative of the currently planned watershed programs being pursued by the City of Indianapolis. This program consists of removing illicit storm drain connections, converting failing septic systems to sanitary sewers in the Septic Tank Elimination Program, reducing stormwater loadings per the stormwater NPDES permit program, and controlling CSOs per the final CSO LTCP¹. The city's current stormwater program is estimated to reduce the stormwater *E. coli* bacteria load by approximately 10 percent. This reduction is considered to be an estimate of the program's effectiveness, not an objective of the program. - 2. An additional scenario was also evaluated to identify the water quality impacts of flow augmentation in the Pleasant Run CSO area. This scenario consists of the programs summarized above, coupled with 5 MGD of additional flow into the Pleasant Run CSO area segment. #### 6.4 Findings of Simulated Scenarios **Table 6.4** contains a summary of the performance of the controls in the Pleasant Run scenarios compared with the TMDL targets of 125 cfu/100 ml for monthly geometric mean, percent of samples above 235 cfu/100 ml, and number of samples above 10,000 cfu/100 ml. The model findings show that all three targets can be met under dry weather flow conditions upstream of the CSO area by the removal of failing septic systems and illicit storm drain connections. The findings also show that significant reductions in wet weather *E. coli* bacteria can be achieved by the city's planned stormwater and CSO controls. **Figures 6.2 and 6.3** contain plots of the TMDL targets for both Pleasant Run scenarios. Additional controls beyond the scenarios presented may be necessary to achieve the TMDL. **Table 6.4** also contains the additional load reduction required to meet the TMDL. Flow augmentation in the Pleasant Run CSO area would increase its **allowable TMDL** to 2.37×10^{10} cfu, which would still require a 99.94% reduction in the average daily bacteria load. ¹ The modeled load reduction was the recommended plan in the April 2001 Draft CSO LTCP. The recommended level of CSO control was 85% capture, or 12 overflow events per year. The final CSO LTCP is currently in development. #### 6.5 Margin of Safety The Margin of Safety (MOS) is a required component of TMDL development. There are two basic methods for incorporating the MOS: 1) Implicitly incorporate the MOS using conservative model assumptions to develop allocations; or 2) Explicitly specify a portion of the TMDL as the MOS and use the remainder for allocations. For this TMDL the MOS was implicitly incorporated into the modeling process by selecting a critical time period and critical default values for each of the summer and winter seasons based on the results of a 10-year simulation. Figure 6.1: Predicted Pleasant Run CSO Area Daily *E. coli* Bacteria Counts April 1, 1997 through October 31, 1997 Figure 6.2: Pleasant Run Upstream of CSO Area -E. coli Bacteria Geometric Mean % of Days E. coli Bacteria > 235 cfu/100 ml # of Days per year E. coli Bacteria > 10,000 cfu/100 ml Projected Indianapolis Programs **Existing Conditions** Figure 6.3: Pleasant Run within CSO Area -- E. coli Bacteria Geometric Mean % of Days E. coli Bacteria > 235 cfu/100 ml # of Days per year E. coli Bacteria > 10,000 cfu/100 ml TABLE 6.1: SAMPLE OF PLEASANT RUN CSO AREA DAILY E. coli COUNTS | | | | TABL | E 6.1: SAM | PLE OF PLEAS | SANT RUN CSC | AREA DAILY E | . coli COUNTS | | | _ | |-----------|--------------------------------|----------------------------|-------------------|------------------------------|--------------------------|---------------------------|----------------------------|------------------------------|-----------------------|-------------------------|--| | Date | Average
Daily
Flow (cfs) | Stormwater
Runoff (cfs) | CSO Flow
(cfs) | Total
Daily
Flow (cfs) | Septic Load
(cfu/day) | Illicit Load
(cfu/day) | Wildlife Load
(cfu/day) | Stormwater
Load (cfu/day) | CSO Load
(cfu/day) | Total Load
(cfu/day) | Resulting
Concentration
(cfu/100 ml) | | 1/1/1992 | 1.74 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 274 | | 1/2/1992 | 1.97 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 2.55E+09 | 0.00E+00 | 1.42E+10 | 288 | | 1/3/1992 | 5.03 | 0 | 0 | 5 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 1.16E+10 | 0.00E+00 | 2.32E+10 | 181 | | 1/4/1992 | 2.15 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 2.43E+09 | 0.00E+00 | 1.41E+10 | 262 | | 1/5/1992 | 1.74 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 2.18E+08 | 0.00E+00 | 1.19E+10 | 278 | | 1/6/1992 | 1.74 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 274 | | 1/7/1992 | 1.71 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 278 | | 1/8/1992 | 1.69 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 7.68E+09 | 0.00E+00 | 1.93E+10 | 431 | | 1/9/1992 | 2.33 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 7.42E+09 | 0.00E+00 | 1.91E+10 | 316 | | 1/10/1992 | 1.78 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 1.54E+09 | 0.00E+00 | 1.32E+10 | 298 | | 1/11/1992 | 1.58 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 1.15E+08 | 0.00E+00 | 1.18E+10 | 304 | | 1/12/1992 | 2.15 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 6.25E+09 | 2.75E+11 | 2.93E+11 | 5263 | | 1/13/1992 | 7.72 | 2 | 0 | 10 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 1.00E+11 | 0.00E+00 | 1.12E+11 | 477 | | 1/14/1992 | 46.68 | 33 | 0 | 79 | 9.57E+09
 1.14E+08 | 1.96E+09 | 1.75E+12 | 0.00E+00 | 1.76E+12 | 910 | | 1/15/1992 | 8.98 | 1 | 0 | 10 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 7.03E+10 | 0.00E+00 | 8.19E+10 | 326 | | 1/16/1992 | 5.39 | 0 | 0 | 6 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 2.44E+10 | 0.00E+00 | 3.61E+10 | 252 | | 1/17/1992 | 3.59 | 0 | 0 | 4 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 4.60E+09 | 0.00E+00 | 1.62E+10 | 181 | | 1/18/1992 | 2.69 | 0 | 0 | 3 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 7.20E+08 | 0.00E+00 | 1.24E+10 | 187 | | 1/19/1992 | 2.15 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 221 | | 1/20/1992 | 1.8 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 264 | | 1/21/1992 | 4.49 | 0 | 0 | 4 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 106 | | 1/22/1992 | 12.21 | 0 | 0 | 12 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 3.25E+08 | 0.00E+00 | 1.20E+10 | 40 | | 1/23/1992 | 23.34 | 0 | 0 | 24 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 1.04E+10 | 0.00E+00 | 2.20E+10 | 38 | | 1/24/1992 | 9.87 | 1 | 0 | 11 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 3.75E+10 | 0.00E+00 | 4.91E+10 | 190 | | 1/25/1992 | 7 | 0 | 0 | 7 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 1.18E+10 | 0.00E+00 | 2.34E+10 | 133 | | 1/26/1992 | 7.36 | 0 | 0 | 7 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 3.34E+09 | 0.00E+00 | 1.50E+10 | 83 | | 1/27/1992 | 8.26 | 0 | 0 | 8 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 3.58E+08 | 0.00E+00 | 1.20E+10 | 59 | | 1/28/1992 | 7 | 0 | 0 | 7 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 68 | | 1/29/1992 | 5.39 | 0 | 0 | 5 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 88 | | 1/30/1992 | 4.49 | 0 | 0 | 4 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 106 | | 1/31/1992 | 3.95 | 0 | 0 | 4 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 120 | | 2/1/1992 | 2.87 | 0 | 0 | 3 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 166 | | 2/2/1992 | 2.51 | 0 | 0 | 3 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 190 | | 2/3/1992 | 2.51 | 0 | 0 | 3 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 190 | | 2/4/1992 | 2.33 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 204 | | 2/5/1992 | 1.97 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 242 | | 2/6/1992 | 1.97 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 242 | | 2/7/1992 | 1.8 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 264 | | 2/8/1992 | 1.71 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 278 | | 2/9/1992 | 1.53 | 0 | 0 | 2 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 311 | | 2/10/1992 | 1.53 | 0 | 0 | 2 | 9.57E+09
9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 311 | | 2/11/1992 | 1.53 | 0 | 0 | 2 | 9.57E+09
9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 311 | | 2/11/1992 | 1.35 | 0 | 0 | 1 | 9.57E+09 | 1.14E+08 | 1.96E+09 | 0.00E+00 | 0.00E+00 | 1.16E+10 | 353 | | 2/12/1992 | 1.97 | 0 | 0 | 2 | 9.57E+09
9.57E+09 | 1.14E+08 | 1.96E+09 | 1.67E+10 | 0.00E+00 | 2.83E+10 | 507 | | 2/13/1992 | 2.69 | 1 | 0 | 3 | 9.57E+09
9.57E+09 | 1.14E+08 | 1.96E+09 | 3.24E+10 | 7.79E+11 | 8.23E+11 | 10143 | | 2/15/1992 | 57.45 | 29 | 0 | 86 | 9.57E+09
9.57E+09 | 1.14E+08 | 1.96E+09 | 1.55E+12 | 0.00E+00 | 1.56E+12 | 740 | | 2/10/1992 | 37.43 | 29 | U | 00 | 9.37 ⊏₹09 | 1.14⊑±00 | 1.90⊏±09 | 1.000=12 | 0.00⊑±00 | 1.30⊑+12 | 740 | | TABLE | 6.2: COMP | | OBSERVI
PLEASAN | | ODELED E. | COLI COUI | NTS | | | |---|-----------|-------|--------------------|-----|-----------|-----------|-----|-------|--------| | Geometric Mean of <i>E. coli</i> % of Days <i>E. coli</i> bacteria > 235 # of Days per year <i>E. coli</i> bacteria > 10,000 cfu/100 ml | | | | | | | | | | | Watershed | All | Dry** | Wet*** | All | Dry** | Wet*** | All | Dry** | Wet*** | | Pleasant Run-Upstream Measured* | 342 | 267 | 454 | 59% | 56% | 63% | 3 | 0 | 3 | | Pleasant Run-Upstream Modeled | 368 | 257 | 443 | 63% | 62% | 64% | 0 | 0 | 0 | | Pleasant Run-CSO Measured* | 413 | 269 | 676 | 60% | 54% | 66% | 19 | 2 | 17 | | Pleasant Run-CSO Modeled | 448 | 259 | 597 | 60% | 62% | 58% | 24 | 0 | 24 | ^{*}Measured E. coli counts are reported in Table 4.2 | | TABLE 6.3: TOTAL AVERAGE E. COLI DAILY LOAD PLEASANT RUN | | | | | | | | | | | | |-----------------------|--|---|--|---|---------------------------------|---|--------------------------------------|--|--|--|--|--| | Watershed | Average
Daily Septic
Load (cfu) | Average Daily Illicit Connection Load (cfu) | Average
Daily
Wildlife
Load (cfu) | Average Daily
Stormwater
Load (cfu) | Average Daily
CSO Load (cfu) | Total
Average
Daily Load
(cfu) | Total Cumulative
Daily Load (cfu) | | | | | | | Pleasant Run Upstream | 5.39E+09 | 5.30E+07 | 9.79E+08 | 2.56E+11 | 0.00E+00 | 2.62E+11 | | | | | | | | Pleasant Run CSO | 4.18E+09 | 6.06E+07 | 9.79E+08 | 4.35E+10 | 4.13E+13 | 4.14E+13 | 4.17E+13 | | | | | | ^{**}The Dry weather geometric mean, % of days over 235 cfu/100 ml, and # of days per year over 10,000 cfu/100 ml are calculated for dry weather days only ^{***}The Wet weather geometric mean, % of days over 235 cfu/100 ml, and # of days per year over 10,000 cfu/100 ml are calculated for wet weather days only ### TABLE 6.4: EFFECTS OF WATERSHED IMPROVEMENT SCENARIOS PLEASANT RUN | | Geometric | Mean of <i>E.</i> | coli bacteria | | | | | per year <i>E. c</i>
0,000 cfu/10 | | Additional Load Reduction Required to meet the allowable | |--|---|-------------------|---------------|-------|------|-------|-----|--------------------------------------|-------|--| | Scenario | All | Dry* | Wet** | All | Dry* | Wet** | All | Dry* | Wet** | TMDL (cfu)*** | | TMDL Objectives | 125 | | | 10% | | | 0 | | | | | Pleasant Run-Upstream Existing | 368 | 257 | 443 | 63% | 62% | 64% | 0 | 0 | 0 | 2.52E+11 | | Pleasant Run-Upstream Projected | | | | | | | | | | | | Indianapolis Programs | Indianapolis Programs 155 53 276 | | 276 | 33% | 0% | 51% | 0 | 0 | 0 | 2.22E+11 | | • | | | | | - | | | | | | | Pleasant Run-CSO Existing | 448 | 259 | 597 | 60% | 62% | 58% | 24 | 0 | 24 | 4.16E+13 | | Pleasant Run-CSO Projected
Indianapolis Programs | 173 | 67 | 287 | 34% | 13% | 45% | 12 | 0 | 12 | 3.90E+13 | | Pleasant Run-CSO Projected Indianapolis Programs with Flow | Indianapolis Programs with Flow | | 400 | 0.40/ | 20/ | 0.407 | 40 | | 40 | 0.005.40 | | Augmentation | 55 | 11 | 130 | 21% | 0% | 31% | 12 | 0 | 12 | 3.90E+13 | Note: E. coli counts below the TMDL Objective are in bold The TMDL for the Pleasant Run CSO area is 1.74x10^10 cfu The TMDL for the Pleasant Run CSO area with Flow Augmentation is 2.37x10^10 cfu These values will be revised based on the level of CSO control in the final CSO $\,$ LTCP that is approved by IDEM and USEPA. ^{*}The Dry weather geometric mean, % of days over 235 cfu/100 ml, and # of days per year over 10,000 cfu/100 ml are calculated for dry weather days only ^{**}The Wet weather geometric mean, % of days over 235 cfu/100 ml, and # of days per year over 10,000 cfu/100 ml are calculated for wet weather days only ^{***}The TMDL for Pleasant Run upstream of the CSO area is 9.35x10^9 cfu ## **Section 7 Public Participation** #### 7.1 Public Meetings To date, the IDEM has held three public stakeholder meetings to present the progress of the TMDL program for Pleasant Run. Information such as a summary of findings, characterization of the stream, weather conditions and how results are affected, model introduction, and an overview of the TMDL process were presented. The public participation meetings were held on September 17, 2002; December 17, 2002; and April 1, 2003. Future meetings are planned in order to present the findings of this report to community stakeholders. IDEM invited all registered neighborhood organizations in Indianapolis, as well as many major environmental groups. Environmental groups in attendance at the public stakeholder meetings include the Wet Weather Technical Advisory Committee and the Friends of the White River. In addition to the TMDL process, water quality-related public outreach is a key component of the city's CSO LTCP, Septic Tank Elimination Program, and stormwater program. ## **Section 8 Implementation Activities and Schedule** The ultimate goal of the TMDL program is to improve water quality in our streams by determining the allowable pollutant load and reducing loads accordingly. While there are no specific activities planned as a result of this TMDL study, results of this TMDL study have been incorporated into the existing programs for control of stormwater, failed septic systems, and CSOs of the City of Indianapolis. Each of these programs is briefly described below. #### 8.1 Stormwater Program The city utilizes new construction or redevelopment permitting as an opportunity to control stormwater flows that discharge into receiving streams or the CSO system through the recently revised Chapter 700 to Section 581 of the City of Indianapolis Code (Stormwater Management and Sediment Control). Chapter 700 requires best management practices (BMPs) to improve the quality of the stormwater runoff whenever new construction or redevelopment that disturbs more than 1/2 - acre is proposed anywhere in Marion County. The city is implementing this proactive
approach in the CSO area to improve water quality even though it is not required by the NPDES stormwater permit. The city requires that prior to new construction, reconstruction, or remodeling, contractors and developers must submit a stormwater control plan and obtain drainage permits to address stormwater runoff originating from the sites. In the CSO area, controlling stormwater runoff has the added benefit of potentially reducing CSO discharges to the receiving streams. In addition, at locations where the stormwater runoff is controlled and then treated by BMPs before being discharged directly to the receiving streams, the city stormwater programs require developers to improve the urban stormwater quality. Control of stormwater runoff quality is based on the management of total suspended solids (TSS). The target TSS removal rate is 80%. The requirements apply to all areas of the county except the city limits of Beech Grove, Lawrence, Southport and Speedway. Control of sediment is required for construction site runoff citywide. The city's current stormwater NPDES Permit program is estimated to reduce the stormwater *E. coli* bacteria load by approximately 10 percent. This reduction is considered to be an estimate of the program's effectiveness, not an objective. #### 8.2 Septic Tank Elimination Program Of the 320,000 homes in Marion County, approximately 18,000 are served by septic systems that were targeted for replacement in the Septic Tank Elimination Program. The Septic Tank Elimination Program prioritized 161 unsewered areas for conversion to sewers. The master plan ranks each area based on the following criteria: septic failure rate, stream bacteriological impairment, wellfield protection, presence of residential wells, proximity to greenways, petitions from residents or Marion County Health & Hospital Corp., number of residents in favor of the project, cost, and downstream capacity. These areas are then placed into one of four categories: Priority 1, Priority 2, Priority 3, and other septic areas not immediately projected for conversion to sewers. #### 8.3 CSO Long Term Control Plan In 2001, the City of Indianapolis submitted a CSO Long Term Control Plan (LTCP) for review to IDEM and the U.S. EPA. This plan proposed an 85% level of capture to achieve water quality standards within the streams of Indianapolis given financial constraints. The plan consisted of AWT enhancements, various system control alternatives, streambank restoration and sediment removal, and accelerated septic system removal. Negotiations with IDEM and Region V EPA are ongoing and may affect the final level of capture and pollutant removal rates achieved through the LTCP. A final CSO LTCP is expected in spring 2004. The TMDL reductions from CSOs will reflect the final LTCP. # **Section 9 Monitoring Plan** An integral part of managing the progress of a TMDL program is monitoring. The current monitoring programs performed by the City of Indianapolis Office of Environmental Services and the Marion County Health Department will continue throughout the implementation of load allocations. These monitoring programs consist of sampling at the locations and intervals described in Section 3 of this report. As the city's watershed improvement programs are implemented, this continued monitoring will allow the city and IDEM the opportunity to review progress towards meeting water quality standards. As this monitoring indicates and in accordance with EPA's guidance, IDEM and the city reserve the right to adopt these projected programs if necessary. ## References AMEC. 2003. City of Indianapolis Fifth Annual Report (2002) Camp Dresser & McKee (CDM). 2003. CSO Control Technologies Evaluation. Camp Dresser & McKee (CDM). 2003. Fall Creek TMDL Report. IDEM. 2002. Indiana's 303(d) Listing Methodology for Impaired Waterbodies and Total Maximum Daily Load. IDEM. 2002. Indiana Water Quality 305(b) Report. U.S. Environmental Protection Agency (EPA). 2001. Protocol for Developing Pathogen TMDLs. # PLEASANT RUN TMDL REPORT APPENDICES | | | OES Sa | mpling Lo | cations | | |------------------------|------------|--------------------|-----------|--------------------|----------| | | | | n Street | | Street | | Date | Wet or | E. Coli | % | E. Coli | % | | | Dry? | (col/100 | Complian | (col/100 | Complian | | | | mL) | ce | mL) | ce | | 1/6/2000 | Dry | 190 | 1 | 210 | 1 | | 2/3/2000 | Wet | 327 | 1 | | | | 3/2/2000 | Wet | 66 | 1 | 28 | 1 | | 4/6/2000 | Dry | 136 | 1 | 50 | 1 | | 5/4/2000 | Wet | 1200 | 1 | 90 | 1 | | 6/8/2000 | Dry | 1162 | 1 | 1000 | 0 | | 7/6/2000 | Wet | 10000 | 0 | 2800 | 0 | | 8/10/2000 | Wet | 196 | 0 | 800 | 0 | | 9/7/2000 | Dry | 5000 | 0 | 4000 | 0 | | 10/5/2000 | Wet | 108000 | 0 | 15000 | 0 | | 11/3/2000 | Dry | 310 | 0 | 2750 | 0 | | 12/7/2000 | Dry | 580
2450 | 0
1 | 24
1120 | 1 | | 1/16/2001
2/13/2001 | Dry | 2450 | 0 | 330 | 0 | | 3/7/2001 | Dry
Dry | 67 | 0 | 24 | 1 | | 4/5/2001 | Dry | 380 | 1 | 293 | 0 | | 5/3/2001 | Dry | 104 | 0 | 450 | 0 | | 6/14/2001 | Dry | 1150 | 0 | 3400 | 0 | | 7/12/2001 | Dry | 900 | 0 | 1300 | 0 | | 8/9/2001 | Dry | 864 | 0 | 5200 | 0 | | 9/6/2001 | Dry | 900 | 0 | 150 | 1 | | 10/4/2001 | Dry | 104 | 1 | 120 | 1 | | 11/8/2001 | Dry | 64 | 1 | 14 | 1 | | 12/5/2001 | Dry | 40 | 1 | 60 | 1 | | 05/02/02 | Wet | 48 | 1 | 190 | 1 | | 5/6/2002 | Wet | 220 | 1 | 760 | 0 | | 05/13/02 | Wet | 8000 | 0 | 4000 | 0 | | 5/22/2002 | Wet | 116 | 1 | 80 | 1 | | 05/29/02 | Wet | 440 | 0 | 333 | 0 | | 6/4/2002 | Dry | 2400 | 0 | 580 | 0 | | 06/11/02 | Dry | 213 | 1 | 700 | 0 | | 6/13/2002 | Wet | 380 | 0 | 3600 | 0 | | 06/19/02 | Dry | 380 | 0 | 393 | 0 | | 6/26/2002 | Wet | 4200 | 0 | 2500 | 0 | | 07/05/02 | Dry | 400 | 0 | 640 | 0 | | 7/11/2002 | Wet | 507 | 0 | 270 | 0 | | 07/16/02 | Dry | 820 | 0 | 340 | 0 | | 7/25/2002
07/30/02 | Wet
Wet | 307
4000 | 0 | 333
4000 | 0 | | 8/1/2002 | | 440 | 0 | 520 | 0 | | 08/06/02 | Dry
Dry | 270 | 0 | 520 | 0 | | 8/13/2002 | Dry | 106 | 1 | 307 | 0 | | 08/22/02 | Dry | 220 | 1 | 480 | 0 | | 8/29/2002 | Dry | 70 | 1 | 210 | 1 | | 09/03/02 | Dry | 167 | 1 | 440 | 0 | | 9/10/2002 | Dry | 260 | 0 | 313 | 0 | | 09/17/02 | Wet | 107 | 1 | 173 | 1 | | 9/24/2002 | Wet | 80 | 1 | 180 | 1 | | 09/26/02 | Dry | 360 | 0 | 160 | 1 | | 10/3/2002 | Dry | 210 | 1 | 1150 | 0 | | 10/15/02 | Wet | 75 | 1 | 350 | 0 | | 10/22/2002 | Dry | 95 | 1 | 110 | 1 | | 10/24/02 | Dry | 65 | 1 | 85 | 1 | | 10/31/2002 | Wet | 100 | 1 | 147 | 1 | | | | DI | ff Dood | Conf | iold Dark | Dort | Ανοριιο | |----------------------|-------------|-----------------|------------|-----------------|------------|-----------------|------------| | Date | Weter | | ff Road | | ield Park | | n Avenue | | Date | Wet or Dry? | E. Coli | % | E. Coli | % | E. Coli | % | | | Diy: | (col/100
mL) | Compliance | (col/100
mL) | Compliance | (col/100
mL) | Compliance | | 01/03/00 | Wet | 300 | 0 | 600 | 0 | IIIL) | | | 01/10/00 | Wet | 100 | 1 | 42000 | 0 | | | | 01/18/00 | Dry | 50 | 1 | 50 | 1 | | | | 01/24/00 | Wet | | | 10 | 1 | | | | 01/26/00 | Dry | | | | | | | | 01/31/00 | Wet | 10 | 1 | | | | | | 02/07/00 | Dry | 10 | 1 | 10 | 1 | | | | 02/14/00 | Wet | 120 | 1 | 190 | 1 | 170 | 1 | | 02/21/00 | Dry | 10 | 1 | 10 | 1 | 10 | 1 | | 03/01/00 | Wet | 30 | 1 | 30 | 1 | 50 | 1 | | 03/06/00 | Dry | 10 | 1 | 10 | 1 | 20 | 1 | | 03/08/00 | Dry | 10 | 1 | 20 | 1 | 20 | 1 | | 03/13/00 | Wet | 190 | 1 | 110 | 1 | 180 | 1 | | 03/20/00 | Wet | 570 | 0 | 650 | 0 | 1200 | 0 | | 03/27/00 | Wet | 40 | 1 | 70 | 1 | 220 | 1 | | 04/03/00 | Wet | 110 | 1 | 30 | 1 | 110 | 1 | | 04/05/00 | Wet | 10 | 1 | 10 | 1 | 60 | 1 | | 04/10/00 | Dry | 40 | 1 | 50 | 1 | 180 | 1 | | 04/17/00 | Wet | 4300 | 0 | 5400 | 0 | 8000 | 0 | | 04/21/00 | Wet | 100 | 1 | 600 | 0 | 2600 | 0 | | 05/01/00 | Wet | 100 | 1 | 200 | 1 | 4500 | 0 | | 05/08/00 | Wet | 200 | 1 | 520 | 0 | 630 | 0 | | 05/15/00 | Dry | 90 | 1 | 200 | 1 | 510 | 0 | | 05/22/00 | Wet | 100 | 1 | 150 | 1 | 150 | 1 | | 05/30/00 | Dry | 180 | 1 | 120 | 1 | 190 | 1 | | 06/05/00 | Wet | 3700 | 0 | 8000 | 0 | 8000 | 0 | | 06/12/00 | Wet | 300 | 0 | 300 | 0 | 900 | 0 | | 06/19/00 | Wet | 900 | 0 | 900 | 0 | 1200 | 0 | | 06/26/00 | Wet | 250 | 0 | 210 | 1 | 630 | 0 | | 06/28/00 | Wet | 1200 | 0 | 230 | 1 | 1000 | 0 | | 07/10/00
07/17/00 | Dry | 220 | 1 | 340 | 0
1 | 1600 | | | 07/17/00 | Dry | 30
120 | 1 | 100
120 | 1 | 550
550 | 0 | | 07/24/00 | Dry
Dry | 40 | 1 | 200 | 1 | 2900 | 0 | | 07/26/00 | Wet | 1700 | 0 | 900 | 0 | 2900 | 0 | | 08/02/00 | Wet | 1200 | 0 | 4500 | 0 | 8000 | 0 | | 08/02/00 | Wet | 6300 | 0 | 7600 | 0 | 5500 | 0 | | 08/14/00 | Dry | 300 | 0 | 100 | 1 | 400 | 0 | | 08/21/00 | | 500 | 0 | 440 | | 7800 | 0 | | 08/28/00 | Dry | 10 | 1 | 110
170 | 1 | 450 | 0 | | 09/06/00 | Dry | 740 | 0 | 3130 | 0 | 30440 | 0 | | 09/11/00 | Wet | 5560 | 0 | 4410 | 0 | 6090 | 0 | | 09/13/00 | Wet | 860 | 0 | 630 | 0 | 860 | 0 | | 09/18/00 | Dry | 200 | 1 | 200 | 1 | 1040 | 0 | | 09/25/00 | Wet | 20750 | 0 | 4880 | 0 | 4570 | 0 | | 10/02/00 | Dry | 100 | 1 | 630 | 0 | 630 | 0 | | 10/08/00 | Dry | 630 | 0 | 200 | 1 | 410 | 0 | | 10/16/00 | Wet | 200 | 1 | 740 | 0 | 630 | 0 | | 10/23/00 | Dry | 100 | 1 | 310 | 0 | 310 | 0 | | 10/30/00 | Dry | | | 200 | 1 | 200 | 1 | | 11/01/00 | Dry | 100 | 1 | 100 | 1 | 5830 | 0 | | 11/06/00 | Wet | 200 | 1 | 100 | 1 | 100 | 1 | | 11/13/00 | Wet | 2130 | 0 | 1600 | 0 | 1340 | 0 | | 11/20/00 | Dry | 100 | 1 | 100 | 1 | 1810 | 0 | | 11/27/00 | Wet | 980 | 0 | 630 | 0 | 740 | 0 | | 12/04/00 | Dry | 100 | 1 | 100 | 1 | 100 | 1 | | 12/06/00 | Dry | 100 | 1 | 100 | 1 | 100 | 1 | | | | Blu | ff Road | Garfi | ield Park | Bartl | n Avenue | |----------------------|------------|-------------|------------|-------------|------------|-------------|------------| | Date | Wet or | E. Coli | % | E. Coli | % | E. Coli | % | | | Dry? | (col/100 | Compliance | (col/100 | Compliance | (col/100 | Compliance | | 10/11/100 |
147.4 | mL) | • | mL) | • | mL) | • | | 12/11/00 | Wet | 49520 | 0 | 198628 | 0 | 27550 | 0 | | 12/18/00
12/26/00 | Wet
Dry | | | | | 2590 | 0 | | 01/02/01 | Dry | 200 | 1 | | | | | | 01/11/01 | Dry | 200 | ' | | | | | | 01/16/01 | Dry | 1070 | 0 | 7330 | 0 | 410 | 0 | | 01/22/01 | Dry | 100 | 1 | 100 | 1 | 410 | 0 | | 01/29/01 | Wet | 410 | 0 | 520 | 0 | 100 | 1 | | 02/05/01 | Wet | 410 | 0 | 740 | 0 | 200 | 1 | | 02/07/01 | Wet | 200 | 1 | 200 | 1 | 100 | 1 | | 02/12/01 | Dry | 260 | 0 | 300 | 0 | 520 | 0 | | 02/20/01 | Dry | 100 | 1 | 520 | 0 | 100 | 1 | | 02/26/01 | Wet | 520 | 0 | 1430 | 0 | 1690 | 0 | | 03/05/01 | Dry | 100 | 1 | 630 | 0 | 310 | 0 | | 03/07/01 | Dry | 200 | 1 | 100 | 1 | 860 | 0 | | 03/12/01 | Dry | 100 | 1 | 100 | 1 | 200 | 1 | | 03/20/01 | Dry | 200 | 1 | 310 | 0 | 100 | 1 | | 03/26/01 | Dry | 100 | 1 | 100 | 1 | 100 | 1 | | 04/02/01 | Wet | 100 | 1 | 100 | 1 | 100 | 1 | | 04/09/01 | Dry | 100 | 1 | 100 | 1 | 100 | 1 | | 04/17/01 | Wet | 100 | 1 | 740 | 0 | 310 | 0 | | 04/23/01 | Dry | 310 | 0 | 520 | 0 | 100 | 1 | | 04/30/01
05/07/01 | Dry | 200 | 0 | 520
1080 | 0 | 100 | 0 | | 05/09/01 | Wet
Wet | 730
1830 | 0 | 2180 | 0 | 1350
970 | 0 | | 05/14/01 | Dry | 410 | 0 | 1050 | 0 | 740 | 0 | | 05/21/01 | Dry | 740 | 0 | 1610 | 0 | 3450 | 0 | | 05/29/01 | Wet | 300 | 0 | 310 | 0 | 740 | 0 | | 06/04/01 | Wet | 43520 | 0 | 241920 | 0 | 241920 | 0 | | 06/06/01 | Wet | 64880 | 0 | 92080 | 0 | 81640 | 0 | | 06/11/01 | Dry | 1090 | 0 | 11190 | 0 | 100 | 1 | | 06/18/01 | Dry | 1340 | 0 | 520 | 0 | 1220 | 0 | | 06/25/01 | Dry | 5450 | 0 | 1220 | 0 | 2010 | 0 | | 07/02/01 | Wet | 15290 | 0 | 17230 | 0 | 36540 | 0 | | 07/09/01 | Wet | 8880 | 0 | 9330 | 0 | 13540 | 0 | | 07/16/01 | Dry | 410 | 0 | 1210 | 0 | 1350 | 0 | | 07/23/01 | Wet | 3350 | 0 | 4190 | 0 | 2160 | 0 | | 07/30/01 | Wet | 850 | 0 | 1600 | 0 | 1610 | 0 | | 08/06/01 | Dry | 410 | 0 | 740 | 0 | 630 | 0 | | 08/13/01 | Dry | 950 | 0 | 520 | 0 | 840 | 0 | | 08/15/01
08/20/01 | Dry
Wet | 200
1210 | 0 | 310
630 | 0 | 310
1710 | 0 | | 08/27/01 | Wet | 410 | 0 | 740 | 0 | 200 | 1 | | 09/04/01 | Dry | 2590 | 0 | 2430 | 0 | 970 | 0 | | 09/10/01 | Wet | 4410 | 0 | 4040 | 0 | 2980 | 0 | | 09/12/01 | Dry | 2620 | 0 | 520 | 0 | 740 | 0 | | 09/17/01 | Dry | 840 | 0 | 200 | 1 | 200 | 1 | | 09/24/01 | Wet | 14550 | 0 | 10220 | 0 | 8600 | 0 | | 10/01/01 | Dry | 410 | 0 | 100 | 1 | 200 | 1 | | 10/08/01 | Dry | 630 | 0 | 1600 | 0 | 740 | 0 | | 10/15/01 | Wet | 1350 | 0 | 1850 | 0 | 2620 | 0 | | 10/22/01 | Dry | 200 | 1 | 310 | 0 | 310 | 0 | | 10/29/01 | Dry | 860 | 0 | 980 | 0 | 410 | 0 | | 11/05/01 | Dry | 520 | 0 | 1300 | 0 | 100 | 1 | | 11/12/01 | Dry | 100 | 1 | 300 | 0 | 310 | 0 | | 11/14/01 | Dry
Wot | 100 | 1 | 100 | 1 | 100 | 1 | | 11/19/01
11/27/01 | Wet
Wet | 6070 | 0 | 6500 | 0 | 4570 | 0 | | 11/2//01 | wet | 6970 | 0 | 6500 | 0 | 4570 | U | | | | Blu | ff Road | Garfi | eld Park | Barth | Avenue | |----------|----------------|----------------------------|-----------------|----------------------------|-----------------|----------------------------|-----------------| | Date | Wet or
Dry? | E. Coli
(col/100
mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | | 12/03/01 | Dry | 200 | 1 | 300 | 0 | 630 | 0 | | 12/04/01 | Dry | 410 | 0 | 1550 | 0 | 1310 | 0 | | 12/10/01 | Dry | 200 | 1 | 200 | 1 | 300 | 0 | | 12/12/01 | Wet | 100 | 1 | 100 | 1 | 630 | 0 | | 12/18/01 | Wet | 4820 | 0 | 2430 | 0 | 4500 | 0 | | 05/02/02 | Wet | 40 | 1 | 10 | 1 | 64 | 1 | | 05/06/02 | Wet | 128 | 1 | 216 | 1 | 310 | 0 | | 05/13/02 | Wet | 9200 | 0 | 4800 | 0 | 4800 | 0 | | 05/22/02 | Wet | 112 | 1 | 112 | 1 | 183 | 1 | | 05/29/02 | Wet | 640 | 0 | 800 | 0 | 557 | 0 | | 06/04/02 | Dry | 2200 | 0 | 440 | 0 | 173 | 1 | | 06/11/02 | Dry | 213 | 1 | 213 | 1 | 80 | 1 | | 06/13/02 | Wet | 440 | 0 | 347 | 0 | 112 | 1 | | 06/19/02 | Dry | 420 | 0 | 300 | 0 | 230 | 1 | | 06/26/02 | Wet | 4000 | 0 | 3700 | 0 | 2700 | 0 | | 07/05/02 | Dry | 287 | 0 | 200 | 1 | 38 | 1 | | 07/11/02 | Wet | 400 | 0 | 840 | 0 | 1300 | 0 | | 07/16/02 | Dry | 560 | 0 | 300 | 0 | 400 | 0 | | 07/25/02 | Wet | 273 | 0 | 300 | 0 | 287 | 0 | | 07/30/02 | Wet | 4000 | 0 | 4000 | 0 | 4000 | 0 | | 08/01/02 | Dry | 127 | 1 | 700 | 0 | 300 | 0 | | 08/06/02 | Dry | 180 | 1 | 460 | 0 | 280 | 0 | | 08/13/02 | Dry | 84 | 1 | 220 | 1 | 267 | 0 | | 08/22/02 | Dry | 180 | 1 | 210 | 1 | 104 | 1 | | 08/29/02 | Dry | 85 | 1 | 150 | 1 | 105 | 1 | | 09/03/02 | Dry | 300 | 0 | 660 | 0 | 253 | 0 | | 09/10/02 | Dry | 130 | 1 | 273 | 0 | 190 | 1 | | 09/17/02 | Wet | 70 | 1 | 65 | 1 | 125 | 1 | | 09/24/02 | Wet | 160 | 1 | 144 | 1 | 200 | 1 | | 09/26/02 | Dry | 210 | 1 | 380 | 0 | 320 | 0 | | 10/03/02 | Dry | 290 | 0 | 150 | 1 | 425 | 0 | | 10/15/02 | Wet | 80 | 1 | 60 | 1 | 100 | 1 | | 10/22/02 | Dry | 75 | 1 | 60 | 1 | 50 | 1 | | 10/24/02 | Dry | 31 | 1 | 34 | 1 | 95 | 1 | | 10/31/02 | Wet | 90 | 1 | 240 | 0 | 177 | 1 | | | | State | Street | Keysto | ne Ave | Southeas | tern Avenue | |----------------------|------------|----------------|------------|----------------|------------|-------------|-------------| | Date | Wet or | E. Coli | % | E. Coli | % | E. Coli | % | | | Dry? | (col/100 mL) | Compliance | (col/100 mL) | Compliance | (col/100 | | | | | (COI/100 IIIL) | Compliance | (COI/100 IIIL) | Compliance | mL) | Compliance | | 01/03/00 | Wet | | | | | 100 | 1 | | 01/10/00 | Wet | | | | | 10000 | 0 | | 01/18/00 | Dry | | | | | 50 | 1 | | 01/24/00 | Wet | | | | | 10 | 1 | | 01/26/00 | Dry | | | | | | | | 01/31/00
02/07/00 | Wet | | | | | ΕO | - 1 | | 02/07/00 | Dry
Wet | | | | | 50
210 | 1 | | 02/14/00 | Dry | | | | | 10 | 1 | | 03/01/00 | Wet | | | | | 60 | 1 | | 03/06/00 | Dry | | | | | 20 | 1 | | 03/08/00 | Dry | | | | | 40 | 1 | | 03/13/00 | Wet | | | | | 180 | 1 | | 03/20/00 | Wet | | | | | 560 | 0 | | 03/27/00 | Wet | | | | | 680 | 0 | | 04/03/00 | Wet | | | | | 200 | 1 | | 04/05/00 | Wet | | | | | 20 | 1 | | 04/10/00 | Dry | | | | | 250 | 0 | | 04/17/00 | Wet | | | | | 5000 | 0 | | 04/21/00
05/01/00 | Wet
Wet | | | | | 300
200 | 0 | | 05/08/00 | Wet | | | | | 410 | 0 | | 05/05/00 | Dry | | | | | 260 | 0 | | 05/22/00 | Wet | | | | | 170 | 1 | | 05/30/00 | Dry | | | | | 170 | 1 | | 06/05/00 | Wet | | | | | 8000 | 0 | | 06/12/00 | Wet | | | | | 700 | 0 | | 06/19/00 | Wet | | | | | 1100 | 0 | | 06/26/00 | Wet | | | | | 240 | 0 | | 06/28/00 | Wet | | | | | 300 | 0 | | 07/10/00 | Dry | | | | | 510 | 0 | | 07/17/00
07/24/00 | Dry
Dry | | | | | 370
620 | 0 | | 07/24/00 | Dry | | | | | 1400 | 0 | | 07/31/00 | Wet | | | | | 5200 | 0 | | 08/02/00 | Wet | | | | | 2800 | 0 | | 08/07/00 | Wet | | | | | 7000 | 0 | | 08/14/00 | Dry | | | | | 100 | 1 | | 08/21/00 | Dry | | | | | 390 | 0 | | 08/28/00 | Dry | | | | | 190 | 1 | | 09/06/00 | Dry | | | | | 1300 | 0 | | 09/11/00 | Wet | | | | | 6090 | 0 | | 09/13/00 | Wet | | | | | 520 | 0 | | 09/18/00
09/25/00 | Dry
Wet | | | | | 310 | 0 | | 10/02/00 | Dry | | | | | 1300
630 | 0 | | 10/02/00 | Dry | | | | | 840 | 0 | | 10/16/00 | Wet | | | | | 310 | 0 | | 10/23/00 | Dry | | | | | 200 | 1 | | 10/30/00 | Dry | | | | | 200 | 1 | | 11/01/00 | Dry | | | | | 16690 | 0 | | 11/06/00 | Wet | | | | | 200 | 1 | | 11/13/00 | Wet | | | | | 6090 | 0 | | 11/20/00 | Dry | 1 | | | | 410 | 0 | | 11/27/00
12/04/00 | Wet
Dry | | | | | 1220
300 | 0 | | 12/04/00 | Dry | 1 | | | | 520 | 0 | | 12/00/00 | DI y | | | | | 520 | U | | | | State | Street | Keysto | ne Ave | Southeas | tern Avenue | |----------------------|-------------|-------------------------|-----------------|-------------------------|-----------------|----------------------------|-----------------| | Date | Wet or Dry? | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | | 12/11/00 | Wet | | | | | 241917 | 0 | | 12/18/00 | Wet | | | | | | | | 12/26/00
01/02/01 | Dry | | | | | 100 | 1 | | 01/02/01 | Dry
Dry | | | | | 100
100 | 1 | | 01/16/01 | Dry | | | | | 520 | 0 | | 01/22/01 | Dry | | | | | 100 | 1 | | 01/29/01 | Wet | | | | | 200 | 1 | | 02/05/01 | Wet | | | | | 630 | 0 | | 02/07/01
02/12/01 | Wet | | | | | 310 | 0 | | 02/12/01 | Dry
Dry | | | | | 410
310 | 0 | | 02/26/01 | Wet | | | | | 1320 | 0 | | 03/05/01 | Dry | | | | | 200 | 1 | | 03/07/01 | Dry | | | | | 100 | 1 | | 03/12/01 | Dry | | | | | 100 | 1 | | 03/20/01 | Dry | | | | | 100 | 1 | | 03/26/01
04/02/01 | Dry
Wet | | | | | 100
100 | 1 | | 04/02/01 | Dry | | | | | 100 | 1 | | 04/17/01 | Wet | | | | | 510 | 0 | | 04/23/01 | Dry | | | | | 100 | 1 | | 04/30/01 | Dry | | | | | 200 | 1 | | 05/07/01 | Wet | | | | | 3090 | 0 | | 05/09/01 | Wet | | | | | 3130 | 0 | | 05/14/01 | Dry | | | | | 300 | 0 | | 05/21/01
05/29/01 | Dry
Wet | | | | | 410
410 | 0 | | 06/04/01 | Wet | | | | | 43520 | 0 | | 06/06/01 | Wet | | | | | 77010 | 0 | | 06/11/01 | Dry | | | | | 310 | 0 | | 06/18/01 | Dry | | | | | 1210 | 0 | | 06/25/01 | Dry | | | | | 850 | 0 | | 07/02/01
07/09/01 | Wet
Wet | | | | | 36090
6760 | 0 | | 07/16/01 | Dry | | | | | 520 | 0 | | 07/23/01 | Wet | | | | | 2780 | 0 | | 07/30/01 | Wet | | | | | 740 | 0 | | 08/06/01 | Dry | | | | | 1090 | 0 | | 08/13/01 | Dry | | | | | 410 | 0 | | 08/15/01
08/20/01 | Dry
Wet | | | | | 300 | 0 | | 08/20/01 | Wet
Wet | 1 | | | | 970
740 | 0 | | 09/04/01 | Dry | | | | | 520 | 0 | | 09/10/01 | Wet | | | | | 3930 | 0 | | 09/12/01 | Dry | | | | | 310 | 0 | | 09/17/01 | Dry | | | | | 200 | 1 | | 09/24/01 | Wet | | | | | 7270 | 0 | | 10/01/01
10/08/01 | Dry
Dry | | | | | 100
1220 | 0 | | 10/05/01 | Wet | | | | | 1220 | 0 | | 10/22/01 | Dry | | | | | 630 | 0 | | 10/29/01 | Dry | | | | | 410 | 0 | | 11/05/01 | Dry | | | | | 100 | 1 | | 11/12/01 | Dry | | | | | 740 | 0 | | 11/14/01 | Dry | | | | | 310 | 0 | | 11/19/01
11/27/01 | Wet | | | | | 100 | 1 | |
11/27/01 | Wet | | | | | 4960 | 0 | | | | State | Street | Keysto | ne Ave | Southeas | tern Avenue | |----------|----------------|-------------------------|-----------------|-------------------------|-----------------|----------------------------|-----------------| | Date | Wet or
Dry? | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | | 12/03/01 | Dry | | | | | 740 | 0 | | 12/04/01 | Dry | | | | | 410 | 0 | | 12/10/01 | Dry | | | | | 200 | 1 | | 12/12/01 | Wet | | | | | 310 | 0 | | 12/18/01 | Wet | | | | | 2310 | 0 | | 05/02/02 | Wet | 96 | 1 | 120 | 1 | 152 | 1 | | 05/06/02 | Wet | 510 | 0 | 880 | 0 | 2520 | 0 | | 05/13/02 | Wet | 2800 | 0 | 8200 | 0 | 3160 | 0 | | 05/22/02 | Wet | 100 | 1 | 59 | 1 | 38 | 1 | | 05/29/02 | Wet | 560 | 0 | 700 | 0 | 400 | 0 | | 06/04/02 | Dry | 240 | 0 | 300 | 0 | 120 | 1 | | 06/11/02 | Dry | 6800 | 0 | 133 | 1 | 240 | 0 | | 06/13/02 | Wet | 119 | 1 | 112 | 1 | 180 | 1 | | 06/19/02 | Dry | 200 | 1 | 300 | 0 | 560 | 0 | | 06/26/02 | Wet | 3100 | 0 | 2900 | 0 | 3400 | 0 | | 07/05/02 | Dry | 10 | 1 | 210 | 1 | 340 | 0 | | 07/11/02 | Wet | 230 | 1 | 320 | 0 | 560 | 0 | | 07/16/02 | Dry | 10 | 1 | 230 | 1 | 393 | 0 | | 07/25/02 | Wet | 367 | 0 | 313 | 0 | 367 | 0 | | 07/30/02 | Wet | 4000 | 0 | 4000 | 0 | 4000 | 0 | | 08/01/02 | Dry | 400 | 0 | 220 | 1 | 360 | 0 | | 08/06/02 | Dry | 260 | 0 | 111 | 1 | 333 | 0 | | 08/13/02 | Dry | 150 | 1 | 103 | 1 | 273 | 0 | | 08/22/02 | Dry | 136 | 1 | 230 | 1 | 104 | 1 | | 08/29/02 | Dry | 260 | 0 | 100 | 1 | 270 | 0 | | 09/03/02 | Dry | 193 | 1 | 55 | 1 | 123 | 1 | | 09/10/02 | Dry | 800 | 0 | 49 | 1 | 46 | 1 | | 09/17/02 | Wet | 87 | 1 | 70 | 1 | 75 | 1 | | 09/24/02 | Wet | 200 | 1 | 180 | 1 | 112 | 1 | | 09/26/02 | Dry | 350 | 0 | 157 | 1 | 170 | 1 | | 10/03/02 | Dry | 140 | 1 | 200 | 1 | 160 | 1 | | 10/15/02 | Wet | 130 | 1 | 100 | 1 | 137 | 1 | | 10/22/02 | Dry | 115 | 1 | 65 | 1 | 150 | 1 | | 10/24/02 | Dry | 200 | 1 | 80 | 1 | 130 | 1 | | 10/31/02 | Wet | 200 | 1 | 130 | 1 | 167 | 1 | | | | MCHD Samp | ling Location | าร | | | | |----------------------|------------|--|---------------|---------------|-------------|--------------|------------| | | | Sherma | an Drive | Emersor | n Avenue | Arlingt | on Avenue | | Date | Wet or | E. Coli | % | E. Coli | % | E. Coli | % | | | Dry? | (col/100 mL) | Compliance | (col/100 mL) | Compliance | (col/100 | Compliance | | | | (66# 166 1112) | Compilation | (661/1001112) | Compilation | mL) | • | | 01/03/00 | Wet | | | | | 100 | 1 | | 01/10/00 | Wet | | | | | 100 | 1 | | 01/18/00 | Dry | | | | | 50 | 1 | | 01/24/00 | Wet | | | | | 10 | 1 | | 01/26/00
01/31/00 | Dry
Wet | | | | | 20 | 1 | | 02/07/00 | Dry | | | | | 90 | 1 | | 02/07/00 | Wet | | | | | 90 | 1 | | 02/21/00 | Dry | | | | | 10 | 1 | | 03/01/00 | Wet | | | | | 30 | 1 | | 03/06/00 | Dry | | | | | 10 | 1 | | 03/08/00 | Dry | | | | | 50 | 1 | | 03/13/00 | Wet | | | | | 220 | 1 | | 03/20/00 | Wet | | | | | 2100 | 0 | | 03/27/00 | Wet | | | | | 270 | 0 | | 04/03/00 | Wet | | | | | 100 | 1 | | 04/05/00 | Wet | | | | | 30 | 1 | | 04/10/00 | Dry | | | | | 140 | 1 | | 04/17/00 | Wet | | | | | 1700 | 0 | | 04/21/00 | Wet | | | | | 600 | 0 | | 05/01/00 | Wet | | | | | 380 | 0 | | 05/08/00 | Wet | | | | | 1480 | 0 | | 05/15/00 | Dry | | | | | 450 | 0 | | 05/22/00 | Wet | | | | | 1300 | 0 | | 05/30/00 | Dry | | | | | 380 | 0 | | 06/05/00 | Wet | | | | | 8000 | 0 | | 06/12/00
06/19/00 | Wet
Wet | | | | | 2800
1000 | 0 | | 06/26/00 | Wet | 1 | | | | 610 | 0 | | 06/28/00 | Wet | | | | | 710 | 0 | | 07/10/00 | Dry | | | | | 680 | 0 | | 07/17/00 | Dry | | | | | 200 | 1 | | 07/24/00 | Dry | | | | | 410 | 0 | | 07/26/00 | Dry | | | | | 320 | 0 | | 07/31/00 | Wet | | | | | 2300 | 0 | | 08/02/00 | Wet | | | | | 1700 | 0 | | 08/07/00 | Wet | | | | | 14000 | 0 | | 08/14/00 | Dry | | | | | 500 | 0 | | 08/21/00 | Dry | | | | | 360 | 0 | | 08/28/00 | Dry | ļ | | | | 160 | 1 | | 09/06/00 | Dry | ļ | | | | 520 | 0 | | 09/11/00 | Wet | | | | | 4190 | 0 | | 09/13/00 | Wet | | | | | 620 | 0 | | 09/18/00 | Dry | 1 | | | | 100 | 1 | | 09/25/00 | Wet | | | | | 310 | <u> </u> | | 10/02/00
10/08/00 | Dry
Dry | | | | | 200
740 | 0 | | 10/06/00 | Wet | 1 | | | | 200 | 1 | | 10/13/00 | Dry | 1 | | | | 100 | 1 | | 10/30/00 | Dry | 1 | | | | 100 | 1 | | 11/01/00 | Dry | 1 | | | | 100 | 1 | | 11/06/00 | Wet | 1 | | | | 970 | 0 | | 11/13/00 | Wet | | | | | 2750 | 0 | | 11/20/00 | Dry | 1 | | | | 200 | 1 | | 11/27/00 | Wet | | | | | 1190 | 0 | | 12/04/00 | Dry | | | | | 200 | 1 | | 12/06/00 | Dry | | | | | 100 | 1 | | | | MCHD Samp | ling Location | าร | | | | |----------------------|----------------|-------------------------|-----------------|-------------------------|-----------------|----------------------------|-----------------| | | | | an Drive | | Avenue | Arlingt | on Avenue | | Date | Wet or
Dry? | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | | 12/11/00 | Wet | | | | | 100 | 1 | | 12/18/00 | Wet | | | | | | | | 12/26/00 | Dry | | | | | | | | 01/02/01 | Dry | | | | | 440 | | | 01/11/01 | Dry | | | | | 410 | 0 | | 01/16/01
01/22/01 | Dry
Dry | | | | | 310
300 | 0 | | 01/29/01 | Wet | | | | | 100 | 1 | | 02/05/01 | Wet | | | | | 630 | 0 | | 02/07/01 | Wet | | | | | 310 | 0 | | 02/12/01 | Dry | | | | | 740 | 0 | | 02/20/01 | Dry | | | | | 410 | 0 | | 02/26/01 | Wet | | | | | 1210 | 0 | | 03/05/01 | Dry | | | | | 200 | 1 | | 03/07/01 | Dry | | | | | 100 | 1 | | 03/12/01 | Dry | | | | | 310 | 0 | | 03/20/01 | Dry | | | | | 200 | 1 | | 03/26/01 | Dry | | | | | 100 | 1 | | 04/02/01
04/09/01 | Wet | | | | | 310
740 | 0 | | 04/17/01 | Dry
Wet | | | | | 520 | 0 | | 04/23/01 | Dry | | | | | 1580 | 0 | | 04/30/01 | Dry | | | | | 410 | 0 | | 05/07/01 | Wet | | | | | 2230 | 0 | | 05/09/01 | Wet | | | | | 1450 | 0 | | 05/14/01 | Dry | | | | | 1690 | 0 | | 05/21/01 | Dry | | | | | 1220 | 0 | | 05/29/01 | Wet | | | | | 1460 | 0 | | 06/04/01 | Wet | | | | | 1200 | 0 | | 06/06/01 | Wet | | | | | 46110 | 0 | | 06/11/01 | Dry | | | | | 1210 | 0 | | 06/18/01
06/25/01 | Dry | | | | | 1200
1220 | 0 | | 07/02/01 | Dry
Wet | | | | | 17250 | 0 | | 07/09/01 | Wet | | | | | 8390 | 0 | | 07/16/01 | Dry | | | | | 2010 | 0 | | 07/23/01 | Wet | | | | | 3240 | 0 | | 07/30/01 | Wet | | | | | 1080 | 0 | | 08/06/01 | Dry | | | | | 310 | 0 | | 08/13/01 | Dry | | | | | 520 | 0 | | 08/15/01 | Dry | 1 | | | | 500 | 0 | | 08/20/01 | Wet | | | | | 2110 | 0 | | 08/27/01 | Wet | 1 | | | | 1090 | 0 | | 09/04/01
09/10/01 | Dry
Wet | - | | | | 630
1090 | 0 | | 09/10/01 | Dry | 1 | | | | 200 | 1 | | 09/17/01 | Dry | | | | | 310 | 0 | | 09/24/01 | Wet | | | | | 3740 | 0 | | 10/01/01 | Dry | 1 | | | | 310 | 0 | | 10/08/01 | Dry | 1 | | | | 730 | 0 | | 10/15/01 | Wet | | | | | 1460 | 0 | | 10/22/01 | Dry | | | | | 410 | 0 | | 10/29/01 | Dry | | | | | 200 | 1 | | 11/05/01 | Dry | | | | | 200 | 1 | | 11/12/01 | Dry | | | | | 310 | 0 | | 11/14/01 | Dry | 1 | | | | 100 | 1 | | 11/19/01 | Wet | 1 | | | | 100 | 1 | | 11/27/01 | Wet | | | | | 3130 | 0 | | | | MCHD Samp | ling Location | าร | | | | |----------|----------------|-------------------------|-----------------|-------------------------|-----------------|----------------------------|-----------------| | | | Sherma | n Drive | Emersor | n Avenue | Arlingt | on Avenue | | Date | Wet or
Dry? | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | | 12/03/01 | Dry | | | | | 740 | 0 | | 12/04/01 | Dry | | | | | 100 | 1 | | 12/10/01 | Dry | | | | | 100 | 1 | | 12/12/01 | Wet | | | | | 200 | 1 | | 12/18/01 | Wet | | | | | 1990 | 0 | | 05/02/02 | Wet | 10 | 1 | 10 | 1 | 10 | 1 | | 05/06/02 | Wet | 1600 | 0 | 23600 | 0 | 840 | 0 | | 05/13/02 | Wet | 4600 | 0 | 6200 | 0 | 2750 | 0 | | 05/22/02 | Wet | 35 | 1 | 16 | 1 | 16 | 1 | | 05/29/02 | Wet | 340 | 0 | 320 | 0 | 657 | 0 | | 06/04/02 | Dry | 133 | 1 | 400 | 0 | 643 | 0 | | 06/11/02 | Dry | 173 | 1 | 20 | 1 | 67 | 1 | | 06/13/02 | Wet | 260 | 0 | 270 | 0 | 560 | 0 | | 06/19/02 | Dry | 580 | 0 | 333 | 0 | 360 | 0 | | 06/26/02 | Wet | 2200 | 0 | 3500 | 0 | 2600 | 0 | | 07/05/02 | Dry | 320 | 0 | 340 | 0 | 440 | 0 | | 07/11/02 | Wet | 270 | 0 | 320 | 0 | 280 | 0 | | 07/16/02 | Dry | 130 | 1 | 180 | 1 | 620 | 0 | | 07/25/02 | Wet | 162 | 1 | 190 | 1 | 400 | 0 | | 07/30/02 | Wet | 4000 | 0 | 4000 | 0 | 4000 | 0 | | 08/01/02 | Dry | 280 | 0 | 293 | 0 | 220 | 1 | | 08/06/02 | Dry | 180 | 1 | 92 | 1 | 170 | 1 | | 08/13/02 | Dry | 460 | 0 | 500 | 0 | 210 | 1 | | 08/22/02 | Dry | 510 | 0 | 350 | 0 | 190 | 1 | | 08/29/02 | Dry | 560 | 0 | 153 | 1 | 310 | 0 | | 09/03/02 | Dry | 560 | 0 | 400 | 0 | 270 | 0 | | 09/10/02 | Dry | 940 | 0 | 320 | 0 | 193 | 1 | | 09/17/02 | Wet | 154 | 1 | 280 | 0 | 65 | 1 | | 09/24/02 | Wet | 260 | 0 | 100 | 1 | 190 | 1 | | 09/26/02 | Dry | 100 | 1 | 200 | 1 | 170 | 1 | | 10/03/02 | Dry | 220 | 1 | 130 | 1 | 115 | 1 | | 10/15/02 | Wet | 137 | 1 | 150 | 1 | 85 | 1 | | 10/22/02 | Dry | 127 | 1 | 105 | 1 | 50 | 1 | | 10/24/02 | Dry | 200 | 1 | 65 | 1 | 66 | 1 | | 10/31/02 | Wet | 147 | 1 | 153 | 1 | 73 | 1 | | | | PLR Gol | f Course | 10th | Street | 21s | t Street | 30th | |----------------------|----------------|-------------------------|-----------------|-------------------------|-----------------|----------------------------|-----------------|----------------------------| | Date | Wet or
Dry? | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | E. Coli
(col/100
mL) | | 01/03/00 | Wet | | | | | 100 | 1 | | | 01/10/00 | Wet | | | | | 1300 | 0 | | | 01/18/00 | Dry | | | | | 50 | 1 | | | 01/24/00 | Wet | | | | | | | |
 01/26/00 | Dry | | | | | | | | | 01/31/00 | Wet | | | | | 10 | - 1 | | | 02/07/00
02/14/00 | Dry
Wet | | | | | 10
10 | 1 | | | 02/14/00 | Dry | | | | | 10 | 1 | | | 03/01/00 | Wet | | | | | 10 | 1 | | | 03/06/00 | Dry | | | | | 10 | 1 | | | 03/08/00 | Dry | | | | | 10 | 1 | | | 03/13/00 | Wet | | | | | 1000 | 0 | | | 03/20/00 | Wet | | | | | 900 | 0 | | | 03/27/00 | Wet | | | | | 90 | 1 | | | 04/03/00 | Wet | | | | | 10 | 1 | | | 04/05/00 | Wet | | | | | 10 | 1 | | | 04/10/00 | Dry | | | | | 10 | 1 | | | 04/17/00 | Wet | | | | | 1000 | 0 | | | 04/21/00 | Wet | | | | | 200 | 1 | | | 05/01/00 | Wet | | | | | 720 | 0 | | | 05/08/00 | Wet | | | | | 740 | 0 | | | 05/15/00 | Dry | | | | | 170
150 | 1 | | | 05/22/00
05/30/00 | Wet | | | | | 80 | 1 | | | 06/05/00 | Dry
Wet | | | | | 4000 | 0 | | | 06/12/00 | Wet | | | | | 1500 | 0 | | | 06/19/00 | Wet | | | | | 27000 | 0 | | | 06/26/00 | Wet | | | | | 230 | 1 | | | 06/28/00 | Wet | | | | | 290 | 0 | | | 07/10/00 | Dry | | | | | 580 | 0 | | | 07/17/00 | Dry | | | | | 280 | 0 | | | 07/24/00 | Dry | | | | | 360 | 0 | | | 07/26/00 | Dry | | | | | 730 | 0 | | | 07/31/00 | Wet | | | | | 1800 | 0 | | | 08/02/00 | Wet | | | | | 560 | 0 | | | 08/07/00 | Wet | | | | | 9000 | 0 | | | 08/14/00 | Dry | | | | | 500 | 0 | | | 08/21/00 | Dry | | | | | 80 | 1 | | | 08/28/00
09/06/00 | Dry | | | | | 240 | 0 | | | 09/06/00 | Dry
Wet | | | | | 2160
3360 | 0 | | | 09/13/00 | Wet | | | | | 520 | 0 | | | 09/18/00 | Dry | | | | | 740 | 0 | | | 09/25/00 | Wet | | | | | 8160 | 0 | | | 10/02/00 | Dry | | | | | 1090 | 0 | | | 10/08/00 | Dry | | | ì | | 1100 | 0 | | | 10/16/00 | Wet | | | | | 310 | 0 | | | 10/23/00 | Dry | | | | | 1340 | 0 | | | 10/30/00 | Dry | | | | | 960 | 0 | | | 11/01/00 | Dry | | | | | 310 | 0 | | | 11/06/00 | Wet | | | | | 520 | 0 | | | 11/13/00 | Wet | | | | | 3140 | 0 | | | 11/20/00 | Dry | | | | | 100 | 1 | | | 11/27/00 | Wet | | | | | 1100 | 0 | | | 12/04/00 | Dry | | | | | 100 | 1 | | | 12/06/00 | Dry | | | | | 100 | 1 | | | | | PLR Gol | f Course | 10th 9 | Street | 21s | t Street | 30th | |----------------------|----------------|-------------------------|-----------------|-------------------------|-----------------|----------------------------|-----------------|----------------------------| | Date | Wet or
Dry? | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | E. Coli
(col/100
mL) | | 12/11/00 | Wet | | | | | 5290 | 0 | | | 12/18/00 | Wet | | | | | 860 | 0 | | | 12/26/00 | Dry | | | | | 310 | 0 | | | 01/02/01 | Dry | | | | | 310 | 0 | | | 01/11/01 | Dry | | | | | 200 | 1 | | | 01/16/01 | Dry | | | | | 630 | 0 | | | 01/22/01 | Dry | | | | | 100
100 | 1 | | | 01/29/01
02/05/01 | Wet
Wet | | | | | 860 | 0 | | | 02/07/01 | Wet | | | | | 200 | 1 | | | 02/12/01 | Dry | | | | | 2850 | 0 | | | 02/20/01 | Dry | | | | | 100 | 1 | | | 02/26/01 | Wet | | | | | 630 | 0 | | | 03/05/01 | Dry | | | | | 100 | 1 | | | 03/07/01 | Dry | | | | | 100 | 1 | | | 03/12/01 | Dry | | | | | 100 | 1 | | | 03/20/01 | Dry | | | | | 100 | 1 | | | 03/26/01 | Dry | | | | | | | | | 04/02/01 | Wet | | | | | 100 | 1 | | | 04/09/01 | Dry | | | | | 100 | 1 | | | 04/17/01 | Wet | | | | | 100 | 1 | | | 04/23/01
04/30/01 | Dry
Dry | | | | | 100
200 | 1 | | | 05/07/01 | Wet | | | | | 2260 | 0 | | | 05/09/01 | Wet | | | | | 1200 | 0 | | | 05/14/01 | Dry | | | | | 3840 | 0 | | | 05/21/01 | Dry | | | | | 410 | 0 | | | 05/29/01 | Wet | | | | | 200 | 1 | | | 06/04/01 | Wet | | | | | 980 | 0 | | | 06/06/01 | Wet | | | | | 19180 | 0 | | | 06/11/01 | Dry | | | | | 740 | 0 | | | 06/18/01 | Dry | | | | | 1750 | 0 | | | 06/25/01 | Dry | | | | | 1580 | 0 | | | 07/02/01
07/09/01 | Wet
Wet | | | | | 13010 | 0 | | | 07/16/01 | Dry | | | | | 8420
630 | 0 | | | 07/23/01 | Wet | | | | | 1580 | 0 | | | 07/30/01 | Wet | | | | | 1100 | 0 | | | 08/06/01 | Dry | | | | | 960 | 0 | | | 08/13/01 | Dry | | | | | 200 | 1 | | | 08/15/01 | Dry | | | | | 410 | 0 | | | 08/20/01 | Wet | | | | | 410 | 0 | | | 08/27/01 | Wet | | | | | 740 | 0 | | | 09/04/01 | Dry | | | | | 860 | 0 | | | 09/10/01 | Wet | | | | | 1350 | 0 | | | 09/12/01 | Dry | 1 | | | | 300 | 0 | | | 09/17/01
09/24/01 | Dry
Wet | | | | | 850
1990 | 0 | | | 10/01/01 | Dry | | | | | 300 | 0 | | | 10/08/01 | Dry | | | | | 740 | 0 | | | 10/15/01 | Wet | | | | | 410 | 0 | | | 10/22/01 | Dry | | | | | 200 | 1 | | | 10/29/01 | Dry | | | | | 200 | 1 | | | 11/05/01 | Dry | | | | | 100 | 1 | | | 11/12/01 | Dry | ļ | | | | 100 | 1 | | | 11/14/01 | Dry | | | | | 200 | 1 | | | 11/19/01 | Wet | | | | | 200 | 1 | | | 11/27/01 | Wet | | | | | 2030 | 0 | | | | | PLR Gol | f Course | 10th | Street | 21s | t Street | 30th | |----------|----------------|-------------------------|-----------------|-------------------------|-----------------|----------------------------|-----------------|----------------------------| | Date | Wet or
Dry? | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100 mL) | %
Compliance | E. Coli
(col/100
mL) | %
Compliance | E. Coli
(col/100
mL) | | 12/03/01 | Dry | | | | | 100 | 1 | | | 12/04/01 | Dry | | | | | 310 | 0 | | | 12/10/01 | Dry | | | | | 100 | 1 | | | 12/12/01 | Wet | | | | | 310 | 0 | | | 12/18/01 | Wet | | | | | 1930 | 0 | | | 05/02/02 | Wet | 10 | 1 | 24 | 1 | 220 | 1 | 104 | | 05/06/02 | Wet | 640 | 0 | 460 | 0 | 390 | 0 | 752 | | 05/13/02 | Wet | 2900 | 0 | 4600 | 0 | 2680 | 0 | 4800 | | 05/22/02 | Wet | 8 | 1 | 4 | 1 | 5 | 1 | 27 | | 05/29/02 | Wet | 120 | 1 | 67 | 1 | 420 | 0 | 400 | | 06/04/02 | Dry | 320 | 0 | 67 | 1 | 160 | 1 | | | 06/11/02 | Dry | 27 | 1 | 20 | 1 | 420 | 0 | 20 | | 06/13/02 | Wet | 3600 | 0 | 370 | 0 | 9700 | 0 | 20000 | | 06/19/02 | Dry | 112 | 1 | 10 | 1 | 131 | 1 | 840 | | 06/26/02 | Wet | 2100 | 0 | 2800 | 0 | 2000 | 0 | 2200 | | 07/05/02 | Dry | 310 | 0 | 200 | 1 | 500 | 0 | 840 | | 07/11/02 | Wet | 180 | 1 | 253 | 0 | 170 | 1 | 740 | | 07/16/02 | Dry | 112 | 1 | 160 | 1 | 160 | 1 | 769 | | 07/25/02 | Wet | 96 | 1 | 116 | 1 | 112 | 1 | 2540 | | 07/30/02 | Wet | 1060 | 0 | 1000 | 0 | 1240 | 0 | 1760 | | 08/01/02 | Dry | 300 | 0 | 287 | 0 | 227 | 1 | 2400 | | 08/06/02 | Dry | 131 | 1 | 200 | 1 | 80 | 1 | 640 | | 08/13/02 | Dry | 126 | 1 | 96 | 1 | 313 | 0 | | | 08/22/02 | Dry | 300 | 0 | 160 | 1 | 1350 | 0 | 500 | | 08/29/02 | Dry | 373 | 0 | 113 | 1 | 173 | 1 | 860 | | 09/03/02 | Dry | 580 | 0 | 460 | 0 | 420 | 0 | 2400 | | 09/10/02 | Dry | 293 | 0 | 387 | 0 | 1200 | 0 | | | 09/17/02 | Wet | 97 | 1 | 160 | 1 | 1120 | 0 | 2300 | | 09/24/02 | Wet | 120 | 1 | 40 | 1 | 210 | 1 | 350 | | 09/26/02 | Dry | 120 | 1 | 12 | 1 | 270 | 0 | 1800 | | 10/03/02 | Dry | 80 | 1 | 55 | 1 | 170 | 1 | 240 | | 10/15/02 | Wet | 85 | 1 | 5 | 1 | 50 | 1 | 470 | | 10/22/02 | Dry | 28 | 1 | 6 | 1 | 290 | 0 | 310 | | 10/24/02 | Dry | 38 | 1 | 19 | 1 | 197 | 1 | 310 | | 10/31/02 | Wet | 65 | 1 | 45 | 1 | 270 | 0 | 143 | | Date | Wet or | n Street | |----------------------|------------|-----------------| | Date | Dry? | %
Compliance | | 01/03/00 | Wet | | | 01/10/00 | Wet | | | 01/18/00
01/24/00 | Dry
Wet | | | 01/26/00 | Dry | | | 01/31/00 | Wet | | | 02/07/00 | Dry | | | 02/14/00 | Wet | | | 02/21/00 | Dry | | | 03/01/00
03/06/00 | Wet
Dry | | | 03/08/00 | Dry | | | 03/13/00 | Wet | | | 03/20/00 | Wet | | | 03/27/00 | Wet | | | 04/03/00 | Wet | | | 04/05/00
04/10/00 | Wet | | | 04/17/00 | Dry
Wet | 1 | | 04/21/00 | Wet | | | 05/01/00 | Wet | | | 05/08/00 | Wet | | | 05/15/00 | Dry | | | 05/22/00 | Wet | | | 05/30/00
06/05/00 | Dry
Wet | | | 06/12/00 | Wet | | | 06/19/00 | Wet | | | 06/26/00 | Wet | | | 06/28/00 | Wet | | | 07/10/00 | Dry | <u> </u> | | 07/17/00
07/24/00 | Dry
Dry | | | 07/26/00 | Dry | | | 07/31/00 | Wet | | | 08/02/00 | Wet | | | 08/07/00 | Wet | | | 08/14/00 | Dry | | | 08/21/00
08/28/00 | Dry
Dry | - | | 09/06/00 | Dry | | | 09/11/00 | Wet | | | 09/13/00 | Wet | | | 09/18/00 | Dry | | | 09/25/00 | Wet | | | 10/02/00
10/08/00 | Dry
Dry | | | 10/16/00 | Wet | | | 10/23/00 | Dry | | | 10/30/00 | Dry | <u> </u> | | 11/01/00 | Dry | <u> </u> | | 11/06/00 | Wet | | | 11/13/00
11/20/00 | Wet | | | 11/20/00 | Dry
Wet | | | 12/04/00 | Dry | | | 12/06/00 | Dry | | | | | | | Date | Wat ar | Street | |----------------------|----------------|-----------------| | Date | Wet or
Dry? | %
Compliance | | 12/11/00 | Wet | | | 12/18/00 | Wet | | | 12/26/00 | Dry | | | 01/02/01
01/11/01 | Dry | | | 01/11/01 | Dry
Dry | | | 01/22/01 | Dry | | | 01/29/01 | Wet | | | 02/05/01 | Wet | | | 02/07/01 | Wet | | | 02/12/01 | Dry | | | 02/20/01 | Dry | | | 02/26/01
03/05/01 | Wet
Dry | | | 03/07/01 | Dry | | | 03/12/01 | Dry | | | 03/20/01 | Dry | | | 03/26/01 | Dry | | | 04/02/01 | Wet | | | 04/09/01 | Dry | | | 04/17/01
04/23/01 | Wet | | | 04/23/01 | Dry
Dry | | | 05/07/01 | Wet | | | 05/09/01 | Wet | | | 05/14/01 | Dry | | | 05/21/01 | Dry | | | 05/29/01 | Wet | | | 06/04/01 | Wet | | | 06/06/01
06/11/01 | Wet
Dry | | | 06/11/01 | Dry | | | 06/25/01 | Dry | | | 07/02/01 | Wet | | | 07/09/01 | Wet | | | 07/16/01 | Dry | | | 07/23/01 | Wet | | | 07/30/01
08/06/01 | Wet | | | 08/13/01 | Dry
Dry | | | 08/15/01 | Dry | | | 08/20/01 | Wet | | | 08/27/01 | Wet | | | 09/04/01 | Dry | | | 09/10/01 | Wet | | | 09/12/01
09/17/01 | Dry | | | 09/24/01 | Dry
Wet | | | 10/01/01 | Dry | | | 10/08/01 | Dry | 1 | | 10/15/01 | Wet | | | 10/22/01 | Dry | | | 10/29/01 | Dry | | | 11/05/01 | Dry | | | 11/12/01
11/14/01 | Dry
Dry | | | 11/19/01 | Wet | | | 11/27/01 | Wet | 1 | | | | | | | | n Street | |----------|--------|------------| | Date | Wet or | 0/ | | | Dry? | % | | | | Compliance | | 12/03/01 | Dry | | | 12/04/01 | Dry | | | 12/10/01 | Dry | | | 12/12/01 | Wet | | | 12/18/01 | Wet | | | 05/02/02 | Wet | 1 | | 05/06/02 | Wet | 0 | | 05/13/02 |
Wet | 0 | | 05/22/02 | Wet | 1 | | 05/29/02 | Wet | 0 | | 06/04/02 | Dry | 1 | | 06/11/02 | Dry | 1 | | 06/13/02 | Wet | 0 | | 06/19/02 | Dry | 0 | | 06/26/02 | Wet | 0 | | 07/05/02 | Dry | 0 | | 07/11/02 | Wet | 0 | | 07/16/02 | Dry | 0 | | 07/25/02 | Wet | 0 | | 07/30/02 | Wet | 0 | | 08/01/02 | Dry | 0 | | 08/06/02 | Dry | 0 | | 08/13/02 | Dry | 1 | | 08/22/02 | Dry | 0 | | 08/29/02 | Dry | 0 | | 09/03/02 | Dry | 0 | | 09/10/02 | Dry | 1 | | 09/17/02 | Wet | 0 | | 09/24/02 | Wet | 0 | | 09/26/02 | Dry | 0 | | 10/03/02 | Dry | 0 | | 10/15/02 | Wet | 0 | | 10/22/02 | Dry | 0 | | 10/24/02 | Dry | 0 | | 10/31/02 | Wet | 1 | | | | | | | | OES | Sampling Lo | ocations | | |----------------------|------------|-------------|-------------|----------------------|------------| | l 1 | | | eld Park | | ern Avenue | | Date | Wet or | E. Coli | | E. Coli | | | | Dry? | (col/100 | % | (col/100 | % | | | | mL) | Compliance | mL) | Compliance | | 1/6/2000 | Dry | 727 | 0 | 270 | 0 | | 2/3/2000 | Wet | 9 | 0 | 120 | 1 | | 3/2/2000 | Wet | 90 | 1 | 300 | 0 | | 4/6/2000 | Dry | 270 | 0 | 140 | 1 | | 5/4/2000 | Wet | | | 454 | 0 | | 6/8/2000 | Dry | 2300 | 0 | 900 | 0 | | 7/6/2000 | Wet | 6000 | 0 | 9400 | 0 | | 8/10/2000 | Wet | 3000
984 | 0 | 2000 | 0 | | 9/7/2000 | Dry | 200000 | 0 | 1312
40000 | 0 | | 11/3/2000 | Wet
Dry | 540 | 0 | 147 | 1 | | 12/7/2000 | Dry | 4 | 1 | 4 | 1 | | 1/16/2001 | Dry | 4000 | 1 | 3040 | 0 | | 2/13/2001 | Dry | 250 | 0 | 450 | 0 | | 3/7/2001 | Dry | 240 | 0 | 510 | 0 | | 4/5/2001 | Dry | 6400 | 0 | 560 | 0 | | 5/3/2001 | Dry | 270 | 0 | 210 | 1 | | 6/14/2001 | Dry | 2000 | 1 | 12800 | 0 | | 7/12/2001 | Dry | 1750 | 0 | 1900 | 0 | | 8/9/2001 | Dry | 72 | 0 | 6800 | 0 | | 9/6/2001 | Dry | 180 | 0 | 470 | 0 | | 10/4/2001 | Dry | 380 | 0 | 464 | 0 | | 11/8/2001 | Dry | 43 | 0 | 10 | 1 | | 12/5/2001 | Dry | 204 | 1 | 70 | 1 | | 05/02/02 | Wet | 320 | 0 | 72 | 1 | | 05/06/02 | Wet | 380 | 0 | 1480 | 0 | | 05/13/02 | Wet | 3600 | 0 | 2700 | 0 | | 05/22/02 | Wet | 51 | 0 | 88 | 1 | | 05/29/02
06/04/02 | Wet
Dry | 886
720 | 0 | 786
520 | 0 | | 06/04/02 | Dry | 480 | 0 | 373 | 0 | | 06/11/02 | Wet | 473 | 0 | 1000 | 0 | | 06/19/02 | Dry | 640 | 0 | 760 | 0 | | 06/26/02 | Wet | 5900 | 0 | 5700 | 0 | | 07/05/02 | Dry | 380 | 0 | 470 | 0 | | 07/11/02 | Wet | 370 | 0 | 320 | 0 | | 07/16/02 | Dry | 1262 | 0 | 440 | 0 | | 07/25/02 | Wet | 420 | 0 | 800 | 0 | | 07/30/02 | Wet | 4000 | 0 | 4000 | 0 | | 08/01/02 | Dry | 360 | 0 | 850 | 0 | | 08/06/02 | Dry | 620 | 0 | 3380 | 0 | | 08/13/02 | Dry | 560 | 0 | 4000 | 0 | | 08/22/02 | Dry | 1350 | 0 | 460 | 0 | | 08/29/02
09/03/02 | Dry | 150
313 | 1 | 660
1360 | 0 | | 09/03/02 | Dry | 220 | 0
1 | 1067 | 0 | | 09/10/02 | Dry
Wet | 125 | 1 | 220 | 1 | | 09/24/02 | Wet | 850 | 0 | 190 | 1 | | 09/26/02 | Dry | 850 | 0 | 1200 | 0 | | 10/03/02 | Dry | 400 | 0 | 650 | 0 | | 10/15/02 | Wet | 187 | 1 | 850 | 0 | | 10/22/02 | Dry | 123 | 1 | 107 | 1 | | 10/24/02 | Dry | 110 | 1 | 80 | 1 | | 10/31/02 | Wet | 150 | 1 | 130 | 1 | | | MCHD Sampling Locations | | | | | | | | | | | |----------------------|-------------------------|-------------------|------------|--------------|------------|----------|------------|--------------|------------|----------|--------------| | | | Garf | ield Park | Keysto | ne Avenue | | l Avenue | Emer | son Place | Oran | ge Street | | Date | Wet or | E. Coli | % | | | Dry? | (col/100 | Compliance | | 01/03/00 | Wet | mL)
200 | 1 | mL)
500 | 0 | mL) | - | mL)
400 | 0 | mL) | | | 01/10/00 | Wet | 700 | 0 | 500 | 0 | | | 200 | 1 | | | | 01/18/00 | Dry | 50 | 1 | 50 | 1 | | | 500 | 0 | | | | 01/24/00 | Wet | 40 | 1 | 10 | 1 | | | 10 | 1 | | | | 01/26/00
01/31/00 | Dry
Wet | 10 | 1 | 10
10 | 1 | | | 1400
10 | 0
1 | | | | 02/07/00 | Dry | 10 | 1 | 10 | 1 | | | 250 | 0 | | | | 02/14/00 | Wet | 50 | 1 | 70 | 1 | | | 100 | 1 | | | | 02/21/00 | Dry | 10 | 1 | 10 | 1 | | | 10 | 1 | | | | 03/01/00
03/06/00 | Wet
Dry | 230
20 | 1 | 30
10 | 1 | | | 110
220 | 1 | | - | | 03/08/00 | Dry | 10 | 1 | 10 | 1 | | | 410 | 0 | | | | 03/13/00 | Wet | 20 | 1 | 50 | 1 | | | 420 | 0 | | | | 03/20/00 | Wet | 750 | 0 | 690 | 0 | | | 550 | 0 | | | | 03/27/00
04/03/00 | Wet
Wet | 100
420 | 0 | 220
170 | 1 | | | 230
120 | 1 | | | | 04/05/00 | Wet | 20 | 1 | 40 | 1 | | | 10 | 1 | | | | 04/10/00 | Dry | 40 | 1 | 110 | 1 | | | 90 | 1 | | | | 04/17/00 | Wet | 2400 | 0 | 1300 | 0 | | | 1600 | 0 | | | | 04/21/00 | Wet | 100 | 1 | 1000 | 0 | | | 300 | 0 | | | | 05/01/00
05/08/00 | Wet
Wet | 260
1460 | 0 | 270
520 | 0 | | | 1000
3140 | 0 | | - | | 05/05/00 | Dry | 440 | 0 | 1400 | 0 | | | 2200 | 0 | | 1 | | 05/22/00 | Wet | 140 | 1 | 350 | 0 | | | 1900 | 0 | | | | 05/30/00 | Dry | 50 | 1 | 390 | 0 | | | 550 | 0 | | | | 06/05/00
06/12/00 | Wet | 6200 | 0 | 8000 | 0 | | | 8000 | 0 | | - | | 06/12/00 | Wet
Wet | 1200
800 | 0 | 1200
1300 | 0 | | | 4800
900 | 0 | | | | 06/26/00 | Wet | 550 | 0 | 470 | 0 | | | 800 | 0 | | | | 06/28/00 | Wet | 410 | 0 | 450 | 0 | | | 2800 | 0 | | | | 07/10/00 | Dry | 340 | 0 | 500 | 0 | | | 2000 | 0 | | | | 07/17/00 | Dry | 300 | 0 | 280 | 0 | | | 250 | 0 | | | | 07/24/00
07/26/00 | Dry
Dry | 720
320 | 0 | 340
1200 | 0 | | | 670
800 | 0 | | | | 07/31/00 | Wet | 710 | 0 | 1100 | 0 | | | 500 | 0 | | | | 08/02/00 | Wet | 680 | 0 | 1200 | 0 | | | 1900 | 0 | | | | 08/07/00 | Wet | 3000 | 0 | 8000 | 0 | | | 6600 | 0 | | | | 08/14/00 | Dry
Dry | 100
530 | 0 | 500 | 0 | | | 600
560 | 0 | | | | 08/21/00
08/28/00 | Dry | 130 | 1 | 1200
250 | 0 | | | 1400 | 0 | | | | 09/06/00 | Dry | 740 | 0 | 4960 | 0 | | | 2130 | 0 | | | | 09/11/00 | Wet | 7940 | 0 | 11780 | 0 | | | 5630 | 0 | | | | 09/13/00 | Wet | 1200 | 0 | 630 | 0 | | | 1210 | 0 | | | | 09/18/00
09/25/00 | Dry
Wet | 1090
2330 | 0 | 840
7170 | 0 | | | 1730
1180 | 0 | | | | 10/02/00 | Dry | 730 | 0 | 200 | 1 | | | 200 | 1 | | | | 10/08/00 | Dry | 410 | 0 | 310 | 0 | | | 1080 | 0 | | | | 10/16/00 | Wet | 620 | 0 | 970 | 0 | | | 410 | 0 | | | | 10/23/00 | Dry | 310
100 | 0
1 | 1200
200 | 0
1 | | | 740 | 0 | | 1 | | 11/01/00 | Dry
Dry | 520 | 0 | 100 | 1 | | | 610
1220 | 0 | | | | 11/06/00 | Wet | 520 | 0 | 410 | 0 | | | 1210 | 0 | | | | 11/13/00 | Wet | 4130 | 0 | 8800 | 0 | | | 3270 | 0 | | | | 11/20/00 | Dry | 740 | 0 | 410 | 0 | | | 1080 | 0 | | - | | 11/27/00
12/04/00 | Wet
Dry | 520
100 | 0
1 | 1100
100 | 0 | | | 1080
100 | 0
1 | | | | 12/04/00 | Dry | 3640 | 0 | 410 | 0 | | | 100 | 1 | | | | 12/11/00 | Wet | 18350 | 0 | 5680 | 0 | | | 410 | 0 | | | | 12/18/00 | Wet | | | | | | | 18600 | 0 | | | | 12/26/00
01/02/01 | Dry
Dry | | | 2880 | 0 | | | 50 | 1 | | | | 01/02/01 | Dry | | | 520 | 0 | | | 520 | 0 | | | | 01/16/01 | Dry | 200 | 1 | 8600 | 0 | | | 24950 | 0 | | | | 01/22/01 | Dry | 410 | 0 | 100 | 1 | | | 3840 | 0 | | | | 01/29/01 | Wet | 630 | 0 | 1100 | 0 | | | 400 | 0 | | | | 02/05/01 | Wet
Wet | 1090
410 | 0 | 1100
850 | 0 | | | 100
1200 | 0 | | - | | 02/07/01 | Dry | 200 | 1 | 2180 | 0 | | | 520 | 0 | | | | 02/20/01 | Dry | 310 | 0 | 200 | 1 | | | 510 | 0 | | | | 02/26/01 | Wet | 740 | 0 | 1320 | 0 | | | 100 | 1 | | | | 03/05/01 | Dry | 200 | 1 | 630 | 0 | | | 520 | 0 | | | | 03/07/01 | Dry
Dry | 100
200 | 1 | 740
100 | <u>0</u> | | | 200
100 | 1 | | - | | 03/12/01 | Dry | 410 | 0 | 100 | 1 | | | 200 | 1 | | | | 03/26/01 | Dry | 410 | 0 | 200 | 1 | | | 100 | 1 | | | | 04/02/01 | Wet | 200 | 1 | 1090 | 0 | | | 200 | 1 | | | | 04/09/01 | Dry | 520 | 0 | 200 | 1 | 1 | | 200 | 1 | | | | | | | | | MCHD | Sampling | Locations | | | | | |----------------------|----------------|---------------------|------------|-----------------|------------|-----------------|---------------|---------------------|------------|-----------------|--| | | | Garf | ield Park | Keysto | ne Avenue | Bethe | l Avenue | Emer | son Place | Oran | ge Street | | Date | Wet or
Dry? | E. Coli
(col/100 | % | E. Coli | % | | | Diyr | (COI/100
mL) | Compliance | (col/100
mL) | Compliance | (col/100
mL) | Compliance | (col/100
mL) | Compliance | (col/100
mL) | Compliance | | 04/17/01 | Wet | 300 | 0 | 520 | 0 | / | | 1340 | 0 | , | | | 04/23/01 | Dry | 520 | 0 | 1730 | 0 | | | 4880 | 0 | | | | 04/30/01
05/07/01 | Dry
Wet | 1970
960 | 0 | 1340
2130 | 0 | | | 1460
1870 | 0 | | | | 05/09/01 | Wet | 630 | 0 | 980 | 0 | | | 3990 | 0 | | | | 05/14/01 | Dry | 740 | 0 | 410 | 0 | | | 2010 | 0 | | | | 05/21/01
05/29/01 | Dry
Wet | 860
200 | 0
1 | 1220
1100 | 0 | | | 2310
1480 | 0 | | | | 06/04/01 | Wet | 6010 | 0 | 6130 | 0 | | | 4720 | 0 | | | | 06/06/01 | Wet | 16640 | 0 | 24890 | 0 | | | 20980 | 0 | | | | 06/11/01 | Dry | 1180 | 0 | 1990 | 0 | | | 1460 | 0 | | | | 06/18/01
06/25/01 | Dry
Dry | 2560
410 | 0 | 980
1460 | 0 | | | 4080
4890 | 0 | | | | 07/02/01 | Wet | 31300 | 0 | 19350 | 0 | | | 21420 | 0 | | | | 07/09/01 | Wet | 11690 | 0 | 15530 | 0 | | | 8840 | 0 | | | | 07/16/01
07/23/01 | Dry
Wet | 940
3930 | 0 | 2560
1090 | 0 | | | 4870
2720 | 0 | | | | 07/30/01 | Wet | 310 | 0 | 860 | 0 | | | 1350 | 0 | | | | 08/06/01 | Dry | 740 | 0 | 1560 | 0 | | | 4800 | 0 | | | | 08/13/01
08/15/01 | Dry
Dry | 980
310 | 0 | 1830
740 | 0 | | | 2060
2620 | 0 | - | | | 08/20/01 | Wet | 860 | 0 | 1210 | 0 | | | 1320 | 0 | | | | 08/27/01 | Wet | 300 | 0 | 2730 | 0 | | | 980 | 0 | | | | 09/04/01 | Dry | 510 | 0 | 950 | 0 | | | 1550 | 0 | | | | 09/10/01
09/12/01 | Wet
Dry | 3090
630 | 0 | 2950
520 | 0 | | | 980
970 | 0 | | | | 09/17/01 | Dry | 200 | 1 | 720 | 0 | | | 1090 | 0 | | | | 09/24/01 | Wet | 11000 | 0 | 7680 | 0 | | | 6050 | 0 | | | | 10/01/01 | Dry
Dry | 310
740 | 0 | 520
1080 | 0 | | | 310
630 | 0 | | | |
10/15/01 | Wet | 2590 | 0 | 630 | 0 | | | 980 | 0 | | | | 10/22/01 | Dry | 100 | 1 | 520 | 0 | | | 410 | 0 | | | | 10/29/01 | Dry
Dry | 740
100 | 0
1 | 1480
310 | 0 | | | 200
310 | 0 | | | | 11/12/01 | Dry | 630 | 0 | 100 | 1 | | | 410 | 0 | | | | 11/14/01 | Dry | 300 | 0 | 100 | 1 | | | 100 | 1 | | | | 11/19/01 | Wet | 2000 | | 100 | 1 | | | 850 | 0 | | | | 11/27/01
12/03/01 | Wet
Dry | 3680
850 | 0 | 3270
100 | 0
1 | | | 2990
730 | 0 | | | | 12/04/01 | Dry | 520 | 0 | 100 | 1 | | | 100 | 1 | | | | 12/10/01 | Dry | 100 | 1 | 1220 | 0 | | | 530 | 0 | | | | 12/12/01
12/18/01 | Wet
Wet | 100
860 | 0 | 420
980 | 0 | | | 100
1220 | 0 | | | | 05/02/02 | Wet | 320 | 0 | 48 | 1 | 64 | 1 | 96 | 1 | 10 | 1 | | 05/06/02 | Wet | 380 | 0 | 768 | 0 | 3050 | 0 | 1200 | 0 | 380 | 0 | | 05/13/02
05/22/02 | Wet
Wet | 3600
51 | <u>0</u> | 1400
24 | 0
1 | 2000
49 | <u>0</u>
1 | 2680
152 | <u> </u> | 980
5 | 1 | | 05/22/02 | Wet | 886 | 0 | 620 | 0 | 253 | 0 | 380 | 0 | 93 | 1 | | 06/04/02 | Dry | 720 | 0 | 620 | 0 | 227 | 1 | 1700 | 0 | 80 | 1 | | 06/11/02
06/13/02 | Dry
Wet | 480
473 | 0 | 460
407 | 0 | 93
220 | 1 | 714
106 | 0
1 | 20
44 | 1 | | 06/13/02 | Dry | 640 | 0 | 330 | 0 | 220 | 1 | 460 | 0 | 19 | 1 | | 06/26/02 | Wet | 5900 | 0 | 2800 | 0 | 4700 | 0 | 2700 | 0 | 290 | 0 | | 07/05/02
07/11/02 | Dry | 380 | 0 | 260 | 0 | 540 | 0 | 800 | 0 | 10 | 1 | | 07/11/02 | Wet
Dry | 370
1262 | 0 | 160
367 | 0 | 480
273 | 0 | 460
2100 | 0 | 62
125 | 1 | | 07/25/02 | Wet | 420 | 0 | 280 | 0 | 240 | 0 | 533 | 0 | 32 | 1 | | 07/30/02 | Wet | 4000 | 0 | 2540 | 0 | 4000 | 0 | 4000 | 0 | 1420 | 0 | | 08/01/02
08/06/02 | Dry
Dry | 360
620 | 0 | 420
560 | 0 | 520
220 | 1 | 1200
1300 | 0 | 62
353 | 0 | | 08/13/02 | Dry | 560 | 0 | 1060 | 0 | 110 | 1 | 773 | 0 | 12 | 1 | | 08/22/02 | Dry | 1350 | 0 | 56 | 1 | 1400 | 0 | 410 | 0 | 480 | 0 | | 08/29/02 | Dry
Dry | 150
313 | 0 | 580
540 | 0 | 100
213 | 1 | 820
720 | 0 | 17
54 | 1 | | 09/03/02 | Dry | 220 | 1 | 420 | 0 | 140 | 1 | 460 | 0 | 130 | 1 | | 09/17/02 | Wet | 125 | 1 | 103 | 1 | 293 | 0 | 193 | 1 | 130 | 1 | | 09/24/02
09/26/02 | Wet
Dry | 850
850 | 0 | 425
400 | 0 | 140
1050 | 1
0 | 250
1100 | 0 | 24
40 | 1 | | 10/03/02 | Dry | 400 | 0 | 950 | 0 | 1050 | 1 | 310 | 0 | 40 | 1 | | 10/15/02 | Wet | 187 | 1 | 210 | 1 | 85 | 1 | 240 | 0 | 130 | 1 | | 10/22/02 | Dry | 123 | 1 | 75 | 1 | 6 | 1 | 110 | 1 | 53 | 1 | | 10/24/02
10/31/02 | Dry
Wet | 110
150 | 1 | 145
280 | 0 | 270
230 | <u>0</u>
1 | 55
250 | 0 | 330
290 | 0 | | 10/31/02 | VVEL | 100 | ı | 200 | U | 230 | ı | 230 | U | 290 | U |